{"title":"人工智能和机器学习在电磁设备设计过程中的应用","authors":"David A. Lowther","doi":"10.3233/jae-230104","DOIUrl":null,"url":null,"abstract":"Designing an electromagnetic device, as with many other devices, is an inverse problem. The issue is that the performance and some constraints on the inputs are provided but the solution to the design problem is non-unique. Additionally, conventionally, at the start of the design process, the information on potential solutions needs to be generated quickly so that a designer can make effective decisions before moving on to detailed performance analysis, but the amount of information that can be obtained from simple analysis tools is limited. Machine learning may be able to assist by increasing the amount of information available at the early stages of the design process. This is not a new concept, in fact it has been considered for several decades but has always been limited by the computational power available. Recent advances in machine learning might allow for the creation of a more effective “sizing” stage of the design process, thus reducing the cost of generating a final design. The goal of this paper is to review some of the work in applying artificial intelligence to the design and analysis of electromagnetic devices and to discuss what might be possible by considering some examples of the use of machine learning in several tools used in conventional design, which have been considered over the past three decades.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"20 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The application of artificial intelligence and machine learning in the design process for electromagnetic devices\",\"authors\":\"David A. Lowther\",\"doi\":\"10.3233/jae-230104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing an electromagnetic device, as with many other devices, is an inverse problem. The issue is that the performance and some constraints on the inputs are provided but the solution to the design problem is non-unique. Additionally, conventionally, at the start of the design process, the information on potential solutions needs to be generated quickly so that a designer can make effective decisions before moving on to detailed performance analysis, but the amount of information that can be obtained from simple analysis tools is limited. Machine learning may be able to assist by increasing the amount of information available at the early stages of the design process. This is not a new concept, in fact it has been considered for several decades but has always been limited by the computational power available. Recent advances in machine learning might allow for the creation of a more effective “sizing” stage of the design process, thus reducing the cost of generating a final design. The goal of this paper is to review some of the work in applying artificial intelligence to the design and analysis of electromagnetic devices and to discuss what might be possible by considering some examples of the use of machine learning in several tools used in conventional design, which have been considered over the past three decades.\",\"PeriodicalId\":50340,\"journal\":{\"name\":\"International Journal of Applied Electromagnetics and Mechanics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Electromagnetics and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/jae-230104\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230104","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
The application of artificial intelligence and machine learning in the design process for electromagnetic devices
Designing an electromagnetic device, as with many other devices, is an inverse problem. The issue is that the performance and some constraints on the inputs are provided but the solution to the design problem is non-unique. Additionally, conventionally, at the start of the design process, the information on potential solutions needs to be generated quickly so that a designer can make effective decisions before moving on to detailed performance analysis, but the amount of information that can be obtained from simple analysis tools is limited. Machine learning may be able to assist by increasing the amount of information available at the early stages of the design process. This is not a new concept, in fact it has been considered for several decades but has always been limited by the computational power available. Recent advances in machine learning might allow for the creation of a more effective “sizing” stage of the design process, thus reducing the cost of generating a final design. The goal of this paper is to review some of the work in applying artificial intelligence to the design and analysis of electromagnetic devices and to discuss what might be possible by considering some examples of the use of machine learning in several tools used in conventional design, which have been considered over the past three decades.
期刊介绍:
The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are:
Physics and mechanics of electromagnetic materials and devices
Computational electromagnetics in materials and devices
Applications of electromagnetic fields and materials
The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics.
The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.