{"title":"用于复合板减薄检测的瞬态热成像信号分析","authors":"Christophe Reboud, Audrey Vigneron, Anastassios Skarlatos","doi":"10.3233/jae-230170","DOIUrl":null,"url":null,"abstract":"Infrared thermography is an imaging technique that can be used to inspect materials for flaws and various degradations in a non destructive way. In this work, we focused on the use of fast models to recover information about the material properties from experimental measurements recorded over time.Two different modelling approaches are compared to each other and to experimental data acquired on a composite plate. Then, the model based inverse problem consisting in estimating the plate properties is discussed.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"262 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transient thermographic signal analysis for thinning detection in composite plate\",\"authors\":\"Christophe Reboud, Audrey Vigneron, Anastassios Skarlatos\",\"doi\":\"10.3233/jae-230170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infrared thermography is an imaging technique that can be used to inspect materials for flaws and various degradations in a non destructive way. In this work, we focused on the use of fast models to recover information about the material properties from experimental measurements recorded over time.Two different modelling approaches are compared to each other and to experimental data acquired on a composite plate. Then, the model based inverse problem consisting in estimating the plate properties is discussed.\",\"PeriodicalId\":50340,\"journal\":{\"name\":\"International Journal of Applied Electromagnetics and Mechanics\",\"volume\":\"262 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Electromagnetics and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/jae-230170\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230170","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Transient thermographic signal analysis for thinning detection in composite plate
Infrared thermography is an imaging technique that can be used to inspect materials for flaws and various degradations in a non destructive way. In this work, we focused on the use of fast models to recover information about the material properties from experimental measurements recorded over time.Two different modelling approaches are compared to each other and to experimental data acquired on a composite plate. Then, the model based inverse problem consisting in estimating the plate properties is discussed.
期刊介绍:
The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are:
Physics and mechanics of electromagnetic materials and devices
Computational electromagnetics in materials and devices
Applications of electromagnetic fields and materials
The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics.
The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.