南极洲细菌群落结构、适应性和抗菌药耐药性流行情况:综述

IF 1.5 4区 地球科学 Q3 ECOLOGY
Sonia Tamang , Prayatna Sharma , Santosh Kumar , Nagendra Thakur
{"title":"南极洲细菌群落结构、适应性和抗菌药耐药性流行情况:综述","authors":"Sonia Tamang ,&nbsp;Prayatna Sharma ,&nbsp;Santosh Kumar ,&nbsp;Nagendra Thakur","doi":"10.1016/j.polar.2023.101034","DOIUrl":null,"url":null,"abstract":"<div><p><span>Antarctica serves as an ideal prototype to study past climatic condition as the ice core records dates back to 100,000 years. Microbiological research on ice core has opened a doorway to our understanding on biodiversity and its contribution to the frozen ecosystem. In this review, the ice core bacterial diversity of East and West Antarctica has been documented. Cold-adapted bacteria hold immense potential in biotechnological applications as they possess functional advantages over mesophilic bacteria. Some of the neoteric applications of bioproducts of Antarctic bacteria have been stated in this review. The current climate change due to </span>global warming<span> exerts a humongous effect on the ecosystem of the polar region. The region being susceptible to any fluctuation in temperature, the exacerbated melting of Antarctic glaciated mass contributes to the rise of global sea level, with loss of ice harbouring unknown microbial entities. This review mainly focuses on the bacterial diversity of East and West Antarctic counterparts, the prevalence of antibiotic-resistant genes, the adaption strategies conferred by bacteria thriving in Antarctic habitats and their potential biotechnological applications.</span></p></div>","PeriodicalId":20316,"journal":{"name":"Polar Science","volume":"40 ","pages":"Article 101034"},"PeriodicalIF":1.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacterial community structure, adaptations and prevalence of antimicrobial resistance in bacteria from Antarctica: A review\",\"authors\":\"Sonia Tamang ,&nbsp;Prayatna Sharma ,&nbsp;Santosh Kumar ,&nbsp;Nagendra Thakur\",\"doi\":\"10.1016/j.polar.2023.101034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Antarctica serves as an ideal prototype to study past climatic condition as the ice core records dates back to 100,000 years. Microbiological research on ice core has opened a doorway to our understanding on biodiversity and its contribution to the frozen ecosystem. In this review, the ice core bacterial diversity of East and West Antarctica has been documented. Cold-adapted bacteria hold immense potential in biotechnological applications as they possess functional advantages over mesophilic bacteria. Some of the neoteric applications of bioproducts of Antarctic bacteria have been stated in this review. The current climate change due to </span>global warming<span> exerts a humongous effect on the ecosystem of the polar region. The region being susceptible to any fluctuation in temperature, the exacerbated melting of Antarctic glaciated mass contributes to the rise of global sea level, with loss of ice harbouring unknown microbial entities. This review mainly focuses on the bacterial diversity of East and West Antarctic counterparts, the prevalence of antibiotic-resistant genes, the adaption strategies conferred by bacteria thriving in Antarctic habitats and their potential biotechnological applications.</span></p></div>\",\"PeriodicalId\":20316,\"journal\":{\"name\":\"Polar Science\",\"volume\":\"40 \",\"pages\":\"Article 101034\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polar Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1873965223001482\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polar Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873965223001482","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

南极洲的冰芯记录可以追溯到 10 万年前,是研究过去气候条件的理想原型。冰芯微生物研究为我们了解生物多样性及其对冰冻生态系统的贡献打开了一扇大门。本综述记录了南极洲东部和西部的冰芯细菌多样性。适应低温的细菌在生物技术应用方面具有巨大潜力,因为与中嗜性细菌相比,它们具有功能上的优势。本综述介绍了南极细菌生物产品的一些新应用。当前全球变暖导致的气候变化对极地地区的生态系统产生了巨大影响。该地区易受任何温度波动的影响,南极冰川融化的加剧导致全球海平面上升,藏有未知微生物实体的冰也随之消失。本综述主要关注南极东西两极的细菌多样性、抗生素耐药基因的流行、南极栖息地细菌的适应策略及其潜在的生物技术应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bacterial community structure, adaptations and prevalence of antimicrobial resistance in bacteria from Antarctica: A review

Antarctica serves as an ideal prototype to study past climatic condition as the ice core records dates back to 100,000 years. Microbiological research on ice core has opened a doorway to our understanding on biodiversity and its contribution to the frozen ecosystem. In this review, the ice core bacterial diversity of East and West Antarctica has been documented. Cold-adapted bacteria hold immense potential in biotechnological applications as they possess functional advantages over mesophilic bacteria. Some of the neoteric applications of bioproducts of Antarctic bacteria have been stated in this review. The current climate change due to global warming exerts a humongous effect on the ecosystem of the polar region. The region being susceptible to any fluctuation in temperature, the exacerbated melting of Antarctic glaciated mass contributes to the rise of global sea level, with loss of ice harbouring unknown microbial entities. This review mainly focuses on the bacterial diversity of East and West Antarctic counterparts, the prevalence of antibiotic-resistant genes, the adaption strategies conferred by bacteria thriving in Antarctic habitats and their potential biotechnological applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polar Science
Polar Science ECOLOGY-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
3.90
自引率
5.60%
发文量
46
期刊介绍: Polar Science is an international, peer-reviewed quarterly journal. It is dedicated to publishing original research articles for sciences relating to the polar regions of the Earth and other planets. Polar Science aims to cover 15 disciplines which are listed below; they cover most aspects of physical sciences, geosciences and life sciences, together with engineering and social sciences. Articles should attract the interest of broad polar science communities, and not be limited to the interests of those who work under specific research subjects. Polar Science also has an Open Archive whereby published articles are made freely available from ScienceDirect after an embargo period of 24 months from the date of publication. - Space and upper atmosphere physics - Atmospheric science/climatology - Glaciology - Oceanography/sea ice studies - Geology/petrology - Solid earth geophysics/seismology - Marine Earth science - Geomorphology/Cenozoic-Quaternary geology - Meteoritics - Terrestrial biology - Marine biology - Animal ecology - Environment - Polar Engineering - Humanities and social sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信