三粒子离散薛定谔算子的不变子空间和特征值

IF 0.5 Q3 MATHEMATICS
J. I. Abdullaev, A. M. Khalkhuzhaev, T. H. Rasulov
{"title":"三粒子离散薛定谔算子的不变子空间和特征值","authors":"J. I. Abdullaev, A. M. Khalkhuzhaev, T. H. Rasulov","doi":"10.3103/s1066369x23090013","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We consider three-particle Schrödinger operator <span>\\({{H}_{{\\mu ,\\gamma }}}({\\mathbf{K}})\\)</span>, <span>\\({\\mathbf{K}} \\in {{\\mathbb{T}}^{3}}\\)</span>, associated to a system of three particles (two of them are bosons with mass 1 and one is an arbitrary with mass <span>\\(m = {\\text{1/}}\\gamma &lt; 1\\)</span>), interacting via zero-range pairwise potentials <span>\\(\\mu &gt; 0\\)</span> and λ &gt; 0 on the three dimensional lattice <span>\\({{\\mathbb{Z}}^{3}}\\)</span>. It is proved that there exist critical value of ratio of mass γ = γ<sub>1</sub> and γ = γ<sub>2</sub> such that the operator <span>\\({{H}_{{\\mu ,\\gamma }}}(\\mathbf{0})\\)</span> <b>0</b> = (0, 0, 0), has a unique eigenvalue for <span>\\(\\gamma \\in (0,{{\\gamma }_{1}})\\)</span>, has two eigenvalues for <span>\\(\\gamma \\in ({{\\gamma }_{1}},{{\\gamma }_{2}})\\)</span> and four eigenvalues for <span>\\(\\gamma \\in ({{\\gamma }_{2}}, + \\infty )\\)</span>, located on the left-hand side of the essential spectrum for large enough µ &gt; 0 and fixed λ &gt; 0. </p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"68 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant Subspaces and Eigenvalues of the Three-Particle Discrete Schrödinger Operators\",\"authors\":\"J. I. Abdullaev, A. M. Khalkhuzhaev, T. H. Rasulov\",\"doi\":\"10.3103/s1066369x23090013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>We consider three-particle Schrödinger operator <span>\\\\({{H}_{{\\\\mu ,\\\\gamma }}}({\\\\mathbf{K}})\\\\)</span>, <span>\\\\({\\\\mathbf{K}} \\\\in {{\\\\mathbb{T}}^{3}}\\\\)</span>, associated to a system of three particles (two of them are bosons with mass 1 and one is an arbitrary with mass <span>\\\\(m = {\\\\text{1/}}\\\\gamma &lt; 1\\\\)</span>), interacting via zero-range pairwise potentials <span>\\\\(\\\\mu &gt; 0\\\\)</span> and λ &gt; 0 on the three dimensional lattice <span>\\\\({{\\\\mathbb{Z}}^{3}}\\\\)</span>. It is proved that there exist critical value of ratio of mass γ = γ<sub>1</sub> and γ = γ<sub>2</sub> such that the operator <span>\\\\({{H}_{{\\\\mu ,\\\\gamma }}}(\\\\mathbf{0})\\\\)</span> <b>0</b> = (0, 0, 0), has a unique eigenvalue for <span>\\\\(\\\\gamma \\\\in (0,{{\\\\gamma }_{1}})\\\\)</span>, has two eigenvalues for <span>\\\\(\\\\gamma \\\\in ({{\\\\gamma }_{1}},{{\\\\gamma }_{2}})\\\\)</span> and four eigenvalues for <span>\\\\(\\\\gamma \\\\in ({{\\\\gamma }_{2}}, + \\\\infty )\\\\)</span>, located on the left-hand side of the essential spectrum for large enough µ &gt; 0 and fixed λ &gt; 0. </p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x23090013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x23090013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Abstract We consider three-particle Schrödinger operator \({{H}_{\mu ,\gamma }}}({\mathbf{K}})\), \({\mathbf{K}} \ in {\{mathbb{T}}^{3}}), associated to a system of three particles (two of them are bosons with mass 1 and one is an arbitrary with mass \(m = {\text{1/}}\gamma <;1)),在三维晶格({\{mathbb{Z}}^{3}}\)上通过零距离对偶势(\(\mu > 0\) and λ > 0)相互作用。研究证明,存在质量比临界值 γ = γ1 和 γ = γ2,使得算子 \({{H}_{\mu ,\gamma }}}(\mathbf{0})\)0 = (0, 0, 0), \(\gamma \in (0,{{\gamma }_{1}})\) 有一个唯一的特征值, \(\gamma \in ({{\gamma }_{1}}、({{\gamma}_{2}})有两个特征值,而(\gamma \in ({{\gamma }_{2}}, + \infty )\) 有四个特征值,位于足够大的 µ >;0 和固定的 λ > 0.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant Subspaces and Eigenvalues of the Three-Particle Discrete Schrödinger Operators

Abstract

We consider three-particle Schrödinger operator \({{H}_{{\mu ,\gamma }}}({\mathbf{K}})\), \({\mathbf{K}} \in {{\mathbb{T}}^{3}}\), associated to a system of three particles (two of them are bosons with mass 1 and one is an arbitrary with mass \(m = {\text{1/}}\gamma < 1\)), interacting via zero-range pairwise potentials \(\mu > 0\) and λ > 0 on the three dimensional lattice \({{\mathbb{Z}}^{3}}\). It is proved that there exist critical value of ratio of mass γ = γ1 and γ = γ2 such that the operator \({{H}_{{\mu ,\gamma }}}(\mathbf{0})\) 0 = (0, 0, 0), has a unique eigenvalue for \(\gamma \in (0,{{\gamma }_{1}})\), has two eigenvalues for \(\gamma \in ({{\gamma }_{1}},{{\gamma }_{2}})\) and four eigenvalues for \(\gamma \in ({{\gamma }_{2}}, + \infty )\), located on the left-hand side of the essential spectrum for large enough µ > 0 and fixed λ > 0.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信