带贝塞尔算子的分数扩散方程的反系数问题

IF 0.5 Q3 MATHEMATICS
D. I. Akramova
{"title":"带贝塞尔算子的分数扩散方程的反系数问题","authors":"D. I. Akramova","doi":"10.3103/s1066369x23090049","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The second initial-boundary value problem in a bounded domain for a fractional-diffusion equation with the Bessel operator and the Gerasimov–Caputo derivative is investigated. Theorems of existence and uniqueness of the solution to the inverse problem of determining the lowest coefficient in a one-dimensional fractional-diffusion equation under the condition of integral observation are obtained. The Schauder principle was used to prove the existence of the solution.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"8 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Coefficient Problem for a Fractional-Diffusion Equation with a Bessel Operator\",\"authors\":\"D. I. Akramova\",\"doi\":\"10.3103/s1066369x23090049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The second initial-boundary value problem in a bounded domain for a fractional-diffusion equation with the Bessel operator and the Gerasimov–Caputo derivative is investigated. Theorems of existence and uniqueness of the solution to the inverse problem of determining the lowest coefficient in a one-dimensional fractional-diffusion equation under the condition of integral observation are obtained. The Schauder principle was used to prove the existence of the solution.</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x23090049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x23090049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 研究了带有贝塞尔算子和格拉西莫夫-卡普托导数的分数扩散方程在有界域中的第二初边界值问题。得到了在积分观测条件下确定一维分数扩散方程最低系数的逆问题解的存在性和唯一性定理。利用 Schauder 原则证明了解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse Coefficient Problem for a Fractional-Diffusion Equation with a Bessel Operator

Abstract

The second initial-boundary value problem in a bounded domain for a fractional-diffusion equation with the Bessel operator and the Gerasimov–Caputo derivative is investigated. Theorems of existence and uniqueness of the solution to the inverse problem of determining the lowest coefficient in a one-dimensional fractional-diffusion equation under the condition of integral observation are obtained. The Schauder principle was used to prove the existence of the solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信