Vahid Sadrian, Esmail Lakzian, Davood Hoseinzade, Behrad Haghighi, M.M. Rashidi, Heuy Dong Kim
{"title":"利用黑箱法优化蒸汽轮机叶片级联的运行条件","authors":"Vahid Sadrian, Esmail Lakzian, Davood Hoseinzade, Behrad Haghighi, M.M. Rashidi, Heuy Dong Kim","doi":"10.1016/j.jppr.2023.11.004","DOIUrl":null,"url":null,"abstract":"<p>Water droplets cause corrosion and erosion, condensation loss, and thermal efficiency reduction in low-pressure steam turbines. In this study, multi-objective optimization was carried out using the black-box method through the automatic linking of a genetic algorithm (GA) and a computational fluid dynamics (CFD) code to find the optimal values of two design variables (inlet stagnation temperature and cascade pressure ratio) to reduce wetness in the last stages of turbines. The wet steam flow numerical model was used to calculate the optimization parameters, including wetness fraction rate, mean droplet radius, erosion rate, condensation loss rate, kinetic energy rate, and mass flow rate. Examining the validation results showed a good agreement between the experimental data and the numerical outcomes. According to the optimization results, the inlet stagnation temperature and the cascade pressure ratio were proposed to be 388.67 (K) and 0.55 (−), respectively. In particular, the suggested optimal temperature and pressure ratio improved the liquid mass fraction and mean droplet radius by about 32% and 29%, respectively. Also, in the identified optimal operating state, the ratios of erosion, condensation loss, and kinetic energy fell by 76%, 32.7%, and 15.85%, respectively, while the mass flow rate ratio rose by 0.68%.</p>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"79 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of operating conditions in the steam turbine blade cascade using the black-box method\",\"authors\":\"Vahid Sadrian, Esmail Lakzian, Davood Hoseinzade, Behrad Haghighi, M.M. Rashidi, Heuy Dong Kim\",\"doi\":\"10.1016/j.jppr.2023.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Water droplets cause corrosion and erosion, condensation loss, and thermal efficiency reduction in low-pressure steam turbines. In this study, multi-objective optimization was carried out using the black-box method through the automatic linking of a genetic algorithm (GA) and a computational fluid dynamics (CFD) code to find the optimal values of two design variables (inlet stagnation temperature and cascade pressure ratio) to reduce wetness in the last stages of turbines. The wet steam flow numerical model was used to calculate the optimization parameters, including wetness fraction rate, mean droplet radius, erosion rate, condensation loss rate, kinetic energy rate, and mass flow rate. Examining the validation results showed a good agreement between the experimental data and the numerical outcomes. According to the optimization results, the inlet stagnation temperature and the cascade pressure ratio were proposed to be 388.67 (K) and 0.55 (−), respectively. In particular, the suggested optimal temperature and pressure ratio improved the liquid mass fraction and mean droplet radius by about 32% and 29%, respectively. Also, in the identified optimal operating state, the ratios of erosion, condensation loss, and kinetic energy fell by 76%, 32.7%, and 15.85%, respectively, while the mass flow rate ratio rose by 0.68%.</p>\",\"PeriodicalId\":51341,\"journal\":{\"name\":\"Propulsion and Power Research\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Propulsion and Power Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jppr.2023.11.004\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propulsion and Power Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jppr.2023.11.004","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Optimization of operating conditions in the steam turbine blade cascade using the black-box method
Water droplets cause corrosion and erosion, condensation loss, and thermal efficiency reduction in low-pressure steam turbines. In this study, multi-objective optimization was carried out using the black-box method through the automatic linking of a genetic algorithm (GA) and a computational fluid dynamics (CFD) code to find the optimal values of two design variables (inlet stagnation temperature and cascade pressure ratio) to reduce wetness in the last stages of turbines. The wet steam flow numerical model was used to calculate the optimization parameters, including wetness fraction rate, mean droplet radius, erosion rate, condensation loss rate, kinetic energy rate, and mass flow rate. Examining the validation results showed a good agreement between the experimental data and the numerical outcomes. According to the optimization results, the inlet stagnation temperature and the cascade pressure ratio were proposed to be 388.67 (K) and 0.55 (−), respectively. In particular, the suggested optimal temperature and pressure ratio improved the liquid mass fraction and mean droplet radius by about 32% and 29%, respectively. Also, in the identified optimal operating state, the ratios of erosion, condensation loss, and kinetic energy fell by 76%, 32.7%, and 15.85%, respectively, while the mass flow rate ratio rose by 0.68%.
期刊介绍:
Propulsion and Power Research is a peer reviewed scientific journal in English established in 2012. The Journals publishes high quality original research articles and general reviews in fundamental research aspects of aeronautics/astronautics propulsion and power engineering, including, but not limited to, system, fluid mechanics, heat transfer, combustion, vibration and acoustics, solid mechanics and dynamics, control and so on. The journal serves as a platform for academic exchange by experts, scholars and researchers in these fields.