Gria:高效的确定性并发控制协议

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xinyuan Wang, Yun Peng, Hejiao Huang
{"title":"Gria:高效的确定性并发控制协议","authors":"Xinyuan Wang, Yun Peng, Hejiao Huang","doi":"10.1007/s11704-023-2605-z","DOIUrl":null,"url":null,"abstract":"<p>Deterministic databases are able to reduce coordination costs in a replication. This property has fostered a significant interest in the design of efficient deterministic concurrency control protocols. However, the state-of-the-art deterministic concurrency control protocol Aria has three issues. First, it is impractical to configure a suitable batch size when the read-write set is unknown. Second, Aria running in low-concurrency scenarios, e.g., a single-thread scenario, suffers from the same conflicts as running in high-concurrency scenarios. Third, the single-version schema brings write-after-write conflicts.</p><p>To address these issues, we propose Gria, an efficient deterministic concurrency control protocol. Gria has the following properties. First, the batch size of Gria is auto-scaling. Second, Gria’s conflict probability in low-concurrency scenarios is lower than that in high-concurrency scenarios. Third, Gria has no write-after-write conflicts by adopting a multi-version structure. To further reduce conflicts, we propose two optimizations: a reordering mechanism as well as a rechecking strategy. The evaluation result on two popular benchmarks shows that Gria outperforms Aria by 13x.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gria: an efficient deterministic concurrency control protocol\",\"authors\":\"Xinyuan Wang, Yun Peng, Hejiao Huang\",\"doi\":\"10.1007/s11704-023-2605-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deterministic databases are able to reduce coordination costs in a replication. This property has fostered a significant interest in the design of efficient deterministic concurrency control protocols. However, the state-of-the-art deterministic concurrency control protocol Aria has three issues. First, it is impractical to configure a suitable batch size when the read-write set is unknown. Second, Aria running in low-concurrency scenarios, e.g., a single-thread scenario, suffers from the same conflicts as running in high-concurrency scenarios. Third, the single-version schema brings write-after-write conflicts.</p><p>To address these issues, we propose Gria, an efficient deterministic concurrency control protocol. Gria has the following properties. First, the batch size of Gria is auto-scaling. Second, Gria’s conflict probability in low-concurrency scenarios is lower than that in high-concurrency scenarios. Third, Gria has no write-after-write conflicts by adopting a multi-version structure. To further reduce conflicts, we propose two optimizations: a reordering mechanism as well as a rechecking strategy. The evaluation result on two popular benchmarks shows that Gria outperforms Aria by 13x.</p>\",\"PeriodicalId\":12640,\"journal\":{\"name\":\"Frontiers of Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11704-023-2605-z\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-023-2605-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

确定性数据库能够降低复制中的协调成本。这一特性激发了人们对设计高效确定性并发控制协议的极大兴趣。然而,最先进的确定性并发控制协议 Aria 有三个问题。首先,当读写集未知时,配置合适的批量大小是不切实际的。其次,在低并发场景(如单线程场景)下运行的 Aria 与在高并发场景下运行的 Aria 存在相同的冲突。为了解决这些问题,我们提出了一种高效的确定性并发控制协议--Gria。Gria 具有以下特性。首先,Gria 的批量大小是自动缩放的。其次,Gria 在低并发场景下的冲突概率低于高并发场景下的冲突概率。第三,Gria 采用多版本结构,不会出现写后冲突。为了进一步减少冲突,我们提出了两个优化方案:重新排序机制和重新检查策略。在两个常用基准测试中的评估结果表明,Gria 的性能是 Aria 的 13 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gria: an efficient deterministic concurrency control protocol

Deterministic databases are able to reduce coordination costs in a replication. This property has fostered a significant interest in the design of efficient deterministic concurrency control protocols. However, the state-of-the-art deterministic concurrency control protocol Aria has three issues. First, it is impractical to configure a suitable batch size when the read-write set is unknown. Second, Aria running in low-concurrency scenarios, e.g., a single-thread scenario, suffers from the same conflicts as running in high-concurrency scenarios. Third, the single-version schema brings write-after-write conflicts.

To address these issues, we propose Gria, an efficient deterministic concurrency control protocol. Gria has the following properties. First, the batch size of Gria is auto-scaling. Second, Gria’s conflict probability in low-concurrency scenarios is lower than that in high-concurrency scenarios. Third, Gria has no write-after-write conflicts by adopting a multi-version structure. To further reduce conflicts, we propose two optimizations: a reordering mechanism as well as a rechecking strategy. The evaluation result on two popular benchmarks shows that Gria outperforms Aria by 13x.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Computer Science
Frontiers of Computer Science COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
8.60
自引率
2.40%
发文量
799
审稿时长
6-12 weeks
期刊介绍: Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信