四维交点李代数中轨道闭包的分类

IF 0.5 4区 数学 Q3 MATHEMATICS
Edison Alberto Fernández-Culma, Nadina Rojas
{"title":"四维交点李代数中轨道闭包的分类","authors":"Edison Alberto Fernández-Culma,&nbsp;Nadina Rojas","doi":"10.1007/s10468-023-10244-8","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to study the natural action of the real symplectic group, <span>\\({\\text {Sp}}(4, \\mathbb {R})\\)</span>, on the algebraic set of 4-dimensional Lie algebras admitting symplectic structures and to give a complete classification of orbit closures. We present some applications of such classification to the study of the Ricci curvature of left-invariant almost Kähler structures on four dimensional Lie groups.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 2","pages":"1013 - 1032"},"PeriodicalIF":0.5000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Orbit Closures in the Variety of 4-Dimensional Symplectic Lie Algebras\",\"authors\":\"Edison Alberto Fernández-Culma,&nbsp;Nadina Rojas\",\"doi\":\"10.1007/s10468-023-10244-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this paper is to study the natural action of the real symplectic group, <span>\\\\({\\\\text {Sp}}(4, \\\\mathbb {R})\\\\)</span>, on the algebraic set of 4-dimensional Lie algebras admitting symplectic structures and to give a complete classification of orbit closures. We present some applications of such classification to the study of the Ricci curvature of left-invariant almost Kähler structures on four dimensional Lie groups.</p></div>\",\"PeriodicalId\":50825,\"journal\":{\"name\":\"Algebras and Representation Theory\",\"volume\":\"27 2\",\"pages\":\"1013 - 1032\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebras and Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-023-10244-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-023-10244-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文旨在研究实交映群的自然作用, \({text\{Sp}}(4, \mathbb {R})\)的自然作用,并给出轨道闭包的完整分类。我们介绍了这种分类在研究四维李群上左不变近乎凯勒结构的里奇曲率中的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Orbit Closures in the Variety of 4-Dimensional Symplectic Lie Algebras

The aim of this paper is to study the natural action of the real symplectic group, \({\text {Sp}}(4, \mathbb {R})\), on the algebraic set of 4-dimensional Lie algebras admitting symplectic structures and to give a complete classification of orbit closures. We present some applications of such classification to the study of the Ricci curvature of left-invariant almost Kähler structures on four dimensional Lie groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups. The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信