一些不平衡扎兰凯维奇数的精确值

Pub Date : 2023-12-14 DOI:10.1002/jgt.23068
Guangzhou Chen, Daniel Horsley, Adam Mammoliti
{"title":"一些不平衡扎兰凯维奇数的精确值","authors":"Guangzhou Chen,&nbsp;Daniel Horsley,&nbsp;Adam Mammoliti","doi":"10.1002/jgt.23068","DOIUrl":null,"url":null,"abstract":"<p>For positive integers <math>\n <semantics>\n <mrow>\n <mi>s</mi>\n </mrow>\n <annotation> $s$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>, the Zarankiewicz number <math>\n <semantics>\n <mrow>\n <msub>\n <mi>Z</mi>\n <mrow>\n <mi>s</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>m</mi>\n \n <mo>,</mo>\n \n <mi>n</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${Z}_{s,t}(m,n)$</annotation>\n </semantics></math> is defined to be the maximum number of edges in a bipartite graph with parts of sizes <math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> that has no complete bipartite subgraph containing <math>\n <semantics>\n <mrow>\n <mi>s</mi>\n </mrow>\n <annotation> $s$</annotation>\n </semantics></math> vertices in the part of size <math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math> vertices in the part of size <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>. A simple argument shows that, for each <math>\n <semantics>\n <mrow>\n <mi>t</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n <annotation> $t\\ge 2$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <msub>\n <mi>Z</mi>\n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mi>t</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>m</mi>\n \n <mo>,</mo>\n \n <mi>n</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>t</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mfenced>\n <mfrac>\n <mi>m</mi>\n \n <mn>2</mn>\n </mfrac>\n </mfenced>\n \n <mo>+</mo>\n \n <mi>n</mi>\n </mrow>\n <annotation> ${Z}_{2,t}(m,n)=(t-1)\\left(\\genfrac{}{}{0.0pt}{}{m}{2}\\right)+n$</annotation>\n </semantics></math> when <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>≥</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>t</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mfenced>\n <mfrac>\n <mi>m</mi>\n \n <mn>2</mn>\n </mfrac>\n </mfenced>\n </mrow>\n <annotation> $n\\ge (t-1)\\left(\\genfrac{}{}{0.0pt}{}{m}{2}\\right)$</annotation>\n </semantics></math>. Here, for large <math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math>, we determine the exact value of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>Z</mi>\n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mi>t</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>m</mi>\n \n <mo>,</mo>\n \n <mi>n</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${Z}_{2,t}(m,n)$</annotation>\n </semantics></math> in almost all of the remaining cases where <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>=</mo>\n \n <mi>Θ</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>t</mi>\n \n <msup>\n <mi>m</mi>\n \n <mn>2</mn>\n </msup>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $n={\\rm{\\Theta }}(t{m}^{2})$</annotation>\n </semantics></math>. We establish a new family of upper bounds on <math>\n <semantics>\n <mrow>\n <msub>\n <mi>Z</mi>\n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mi>t</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>m</mi>\n \n <mo>,</mo>\n \n <mi>n</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${Z}_{2,t}(m,n)$</annotation>\n </semantics></math> which complement a family already obtained by Roman. We then prove that the floor of the best of these bounds is almost always achieved. We also show that there are cases in which this floor cannot be achieved and others in which determining whether it is achieved is likely a very hard problem. Our results are proved by viewing the problem through the lens of linear hypergraphs and our constructions make use of existing results on edge decompositions of dense graphs.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23068","citationCount":"0","resultStr":"{\"title\":\"Exact values for some unbalanced Zarankiewicz numbers\",\"authors\":\"Guangzhou Chen,&nbsp;Daniel Horsley,&nbsp;Adam Mammoliti\",\"doi\":\"10.1002/jgt.23068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For positive integers <math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n </mrow>\\n <annotation> $s$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <annotation> $t$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <annotation> $m$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>, the Zarankiewicz number <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Z</mi>\\n <mrow>\\n <mi>s</mi>\\n \\n <mo>,</mo>\\n \\n <mi>t</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>m</mi>\\n \\n <mo>,</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${Z}_{s,t}(m,n)$</annotation>\\n </semantics></math> is defined to be the maximum number of edges in a bipartite graph with parts of sizes <math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <annotation> $m$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> that has no complete bipartite subgraph containing <math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n </mrow>\\n <annotation> $s$</annotation>\\n </semantics></math> vertices in the part of size <math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <annotation> $m$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <annotation> $t$</annotation>\\n </semantics></math> vertices in the part of size <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>. A simple argument shows that, for each <math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n <annotation> $t\\\\ge 2$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Z</mi>\\n <mrow>\\n <mn>2</mn>\\n \\n <mo>,</mo>\\n \\n <mi>t</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>m</mi>\\n \\n <mo>,</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>t</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mfenced>\\n <mfrac>\\n <mi>m</mi>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mfenced>\\n \\n <mo>+</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n <annotation> ${Z}_{2,t}(m,n)=(t-1)\\\\left(\\\\genfrac{}{}{0.0pt}{}{m}{2}\\\\right)+n$</annotation>\\n </semantics></math> when <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>≥</mo>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>t</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mfenced>\\n <mfrac>\\n <mi>m</mi>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mfenced>\\n </mrow>\\n <annotation> $n\\\\ge (t-1)\\\\left(\\\\genfrac{}{}{0.0pt}{}{m}{2}\\\\right)$</annotation>\\n </semantics></math>. Here, for large <math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <annotation> $m$</annotation>\\n </semantics></math>, we determine the exact value of <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Z</mi>\\n <mrow>\\n <mn>2</mn>\\n \\n <mo>,</mo>\\n \\n <mi>t</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>m</mi>\\n \\n <mo>,</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${Z}_{2,t}(m,n)$</annotation>\\n </semantics></math> in almost all of the remaining cases where <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>=</mo>\\n \\n <mi>Θ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>t</mi>\\n \\n <msup>\\n <mi>m</mi>\\n \\n <mn>2</mn>\\n </msup>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $n={\\\\rm{\\\\Theta }}(t{m}^{2})$</annotation>\\n </semantics></math>. We establish a new family of upper bounds on <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Z</mi>\\n <mrow>\\n <mn>2</mn>\\n \\n <mo>,</mo>\\n \\n <mi>t</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>m</mi>\\n \\n <mo>,</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${Z}_{2,t}(m,n)$</annotation>\\n </semantics></math> which complement a family already obtained by Roman. We then prove that the floor of the best of these bounds is almost always achieved. We also show that there are cases in which this floor cannot be achieved and others in which determining whether it is achieved is likely a very hard problem. Our results are proved by viewing the problem through the lens of linear hypergraphs and our constructions make use of existing results on edge decompositions of dense graphs.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23068\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于正整数 s$s$、t$t$、m$m$ 和 n$n$,Zarankiewicz 数 Zs,t(m,n)${Z}_{s,t}(m,n)$ 的定义是:在大小分别为 m$m$ 和 n$n$ 的双方形图中,没有包含大小为 m$m$ 的部分中的 s$s$ 顶点和大小为 n$n$ 的部分中的 t$t$ 顶点的完整双方形子图的最大边数。一个简单的论证表明,对于每个 t≥2$t\ge 2$,Z2,t(m,n)=(t-1)m2+n${Z}_{2,t}(m,n)=(t-1)\left(\genfrac{}{}0.0pt}{}{m}{2}\right)+n$ 当 n≥(t-1)m2$nge (t-1)\left(\genfrac{}{}{0.0pt}{}{m}{2}\right)$ 时。这里,对于大 m$m$,我们几乎确定了在 n=Θ(tm2)$n={\rm{\Theta }}(t{m}^{2})$ 的所有剩余情况下 Z2,t(m,n)${Z}_{2,t}(m,n)$的精确值。我们在 Z2,t(m,n)${Z}_{2,t}(m,n)$ 上建立了一个新的上界族,它补充了罗曼已经得到的一个族。然后我们证明,这些边界中最好的边界的下限几乎总是可以达到的。我们还证明,在有些情况下无法达到这个底限,而在另一些情况下,确定是否达到这个底限可能是一个非常困难的问题。我们的结果是通过线性超图的视角来证明的,我们的构造利用了关于密集图边分解的现有结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exact values for some unbalanced Zarankiewicz numbers

分享
查看原文
Exact values for some unbalanced Zarankiewicz numbers

For positive integers s $s$ , t $t$ , m $m$ and n $n$ , the Zarankiewicz number Z s , t ( m , n ) ${Z}_{s,t}(m,n)$ is defined to be the maximum number of edges in a bipartite graph with parts of sizes m $m$ and n $n$ that has no complete bipartite subgraph containing s $s$ vertices in the part of size m $m$ and t $t$ vertices in the part of size n $n$ . A simple argument shows that, for each t 2 $t\ge 2$ , Z 2 , t ( m , n ) = ( t 1 ) m 2 + n ${Z}_{2,t}(m,n)=(t-1)\left(\genfrac{}{}{0.0pt}{}{m}{2}\right)+n$ when n ( t 1 ) m 2 $n\ge (t-1)\left(\genfrac{}{}{0.0pt}{}{m}{2}\right)$ . Here, for large m $m$ , we determine the exact value of Z 2 , t ( m , n ) ${Z}_{2,t}(m,n)$ in almost all of the remaining cases where n = Θ ( t m 2 ) $n={\rm{\Theta }}(t{m}^{2})$ . We establish a new family of upper bounds on Z 2 , t ( m , n ) ${Z}_{2,t}(m,n)$ which complement a family already obtained by Roman. We then prove that the floor of the best of these bounds is almost always achieved. We also show that there are cases in which this floor cannot be achieved and others in which determining whether it is achieved is likely a very hard problem. Our results are proved by viewing the problem through the lens of linear hypergraphs and our constructions make use of existing results on edge decompositions of dense graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信