利用沟道堆叠工程优化三栅极无结 FinFET 的性能,用于数字和模拟/射频设计

IF 4.8 4区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Devenderpal Singh, Shalini Chaudhary, Basudha Dewan, Menka Yadav
{"title":"利用沟道堆叠工程优化三栅极无结 FinFET 的性能,用于数字和模拟/射频设计","authors":"Devenderpal Singh, Shalini Chaudhary, Basudha Dewan, Menka Yadav","doi":"10.1088/1674-4926/44/11/114103","DOIUrl":null,"url":null,"abstract":"This manuscript explores the behavior of a junctionless tri-gate FinFET at the nano-scale region using SiGe material for the channel. For the analysis, three different channel structures are used: (a) tri-layer stack channel (TLSC) (Si–SiGe–Si), (b) double layer stack channel (DLSC) (SiGe–Si), (c) single layer channel (SLC) (Si). The <italic toggle=\"yes\">I</italic>−<italic toggle=\"yes\">V</italic> characteristics, subthreshold swing (SS), drain-induced barrier lowering (DIBL), threshold voltage (<italic toggle=\"yes\">V</italic>\n<sub>t</sub>), drain current (<italic toggle=\"yes\">I</italic>\n<sub>ON</sub>), OFF current (<italic toggle=\"yes\">I</italic>\n<sub>OFF</sub>), and ON-OFF current ratio (<italic toggle=\"yes\">I</italic>\n<sub>ON</sub>/<italic toggle=\"yes\">I</italic>\n<sub>OFF</sub>) are observed for the structures at a 20 nm gate length. It is seen that TLSC provides 21.3% and 14.3% more ON current than DLSC and SLC, respectively. The paper also explores the analog and RF factors such as input transconductance (<italic toggle=\"yes\">g</italic>\n<sub>m</sub>), output transconductance (<italic toggle=\"yes\">g</italic>\n<sub>ds</sub>), gain (<italic toggle=\"yes\">g</italic>\n<sub>m</sub>/<italic toggle=\"yes\">g</italic>\n<sub>ds</sub>), transconductance generation factor (TGF), cut-off frequency (<italic toggle=\"yes\">f</italic>\n<sub>T</sub>), maximum oscillation frequency (<italic toggle=\"yes\">f</italic>\n<sub>max</sub>), gain frequency product (GFP) and linearity performance parameters such as second and third-order harmonics (<italic toggle=\"yes\">g</italic>\n<sub>m2</sub>, <italic toggle=\"yes\">g</italic>\n<sub>m3</sub>), voltage intercept points (VIP<sub>2</sub>, VIP<sub>3</sub>) and 1-dB compression points for the three structures. The results show that the TLSC has a high analog performance due to more <italic toggle=\"yes\">g</italic>\n<sub>m</sub> and provides 16.3%, 48.4% more gain than SLC and DLSC, respectively and it also provides better linearity. All the results are obtained using the VisualTCAD tool.","PeriodicalId":17038,"journal":{"name":"Journal of Semiconductors","volume":"59 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance optimization of tri-gate junctionless FinFET using channel stack engineering for digital and analog/RF design\",\"authors\":\"Devenderpal Singh, Shalini Chaudhary, Basudha Dewan, Menka Yadav\",\"doi\":\"10.1088/1674-4926/44/11/114103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This manuscript explores the behavior of a junctionless tri-gate FinFET at the nano-scale region using SiGe material for the channel. For the analysis, three different channel structures are used: (a) tri-layer stack channel (TLSC) (Si–SiGe–Si), (b) double layer stack channel (DLSC) (SiGe–Si), (c) single layer channel (SLC) (Si). The <italic toggle=\\\"yes\\\">I</italic>−<italic toggle=\\\"yes\\\">V</italic> characteristics, subthreshold swing (SS), drain-induced barrier lowering (DIBL), threshold voltage (<italic toggle=\\\"yes\\\">V</italic>\\n<sub>t</sub>), drain current (<italic toggle=\\\"yes\\\">I</italic>\\n<sub>ON</sub>), OFF current (<italic toggle=\\\"yes\\\">I</italic>\\n<sub>OFF</sub>), and ON-OFF current ratio (<italic toggle=\\\"yes\\\">I</italic>\\n<sub>ON</sub>/<italic toggle=\\\"yes\\\">I</italic>\\n<sub>OFF</sub>) are observed for the structures at a 20 nm gate length. It is seen that TLSC provides 21.3% and 14.3% more ON current than DLSC and SLC, respectively. The paper also explores the analog and RF factors such as input transconductance (<italic toggle=\\\"yes\\\">g</italic>\\n<sub>m</sub>), output transconductance (<italic toggle=\\\"yes\\\">g</italic>\\n<sub>ds</sub>), gain (<italic toggle=\\\"yes\\\">g</italic>\\n<sub>m</sub>/<italic toggle=\\\"yes\\\">g</italic>\\n<sub>ds</sub>), transconductance generation factor (TGF), cut-off frequency (<italic toggle=\\\"yes\\\">f</italic>\\n<sub>T</sub>), maximum oscillation frequency (<italic toggle=\\\"yes\\\">f</italic>\\n<sub>max</sub>), gain frequency product (GFP) and linearity performance parameters such as second and third-order harmonics (<italic toggle=\\\"yes\\\">g</italic>\\n<sub>m2</sub>, <italic toggle=\\\"yes\\\">g</italic>\\n<sub>m3</sub>), voltage intercept points (VIP<sub>2</sub>, VIP<sub>3</sub>) and 1-dB compression points for the three structures. The results show that the TLSC has a high analog performance due to more <italic toggle=\\\"yes\\\">g</italic>\\n<sub>m</sub> and provides 16.3%, 48.4% more gain than SLC and DLSC, respectively and it also provides better linearity. All the results are obtained using the VisualTCAD tool.\",\"PeriodicalId\":17038,\"journal\":{\"name\":\"Journal of Semiconductors\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Semiconductors\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-4926/44/11/114103\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Semiconductors","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-4926/44/11/114103","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本手稿探讨了使用硅锗材料作为沟道的无结三栅极 FinFET 在纳米尺度区域的行为。分析中使用了三种不同的沟道结构:(a) 三层堆叠沟道 (TLSC)(硅-锗-硅);(b) 双层堆叠沟道 (DLSC)(硅-锗-硅);(c) 单层沟道 (SLC)(硅)。在栅极长度为 20 nm 的条件下,观察了这些结构的 I-V 特性、阈下摆动 (SS)、漏极诱导势垒降低 (DIBL)、阈值电压 (Vt)、漏极电流 (ION)、关断电流 (IOFF) 和导通-关断电流比 (ION/IOFF)。结果表明,TLSC 提供的导通电流分别比 DLSC 和 SLC 高 21.3% 和 14.3%。论文还探讨了这三种结构的模拟和射频因素,如输入跨导(gm)、输出跨导(gds)、增益(gm/gds)、跨导产生系数(TGF)、截止频率(fT)、最大振荡频率(fmax)、增益频率积(GFP)以及线性性能参数,如二阶和三阶谐波(gm2、gm3)、电压截取点(VIP2、VIP3)和 1 分贝压缩点。结果表明,TLSC 具有较高的模拟性能,因为其 gm 更大,增益分别比 SLC 和 DLSC 高出 16.3%、48.4%,而且线性度更好。所有结果均使用 VisualTCAD 工具得出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance optimization of tri-gate junctionless FinFET using channel stack engineering for digital and analog/RF design
This manuscript explores the behavior of a junctionless tri-gate FinFET at the nano-scale region using SiGe material for the channel. For the analysis, three different channel structures are used: (a) tri-layer stack channel (TLSC) (Si–SiGe–Si), (b) double layer stack channel (DLSC) (SiGe–Si), (c) single layer channel (SLC) (Si). The IV characteristics, subthreshold swing (SS), drain-induced barrier lowering (DIBL), threshold voltage (V t), drain current (I ON), OFF current (I OFF), and ON-OFF current ratio (I ON/I OFF) are observed for the structures at a 20 nm gate length. It is seen that TLSC provides 21.3% and 14.3% more ON current than DLSC and SLC, respectively. The paper also explores the analog and RF factors such as input transconductance (g m), output transconductance (g ds), gain (g m/g ds), transconductance generation factor (TGF), cut-off frequency (f T), maximum oscillation frequency (f max), gain frequency product (GFP) and linearity performance parameters such as second and third-order harmonics (g m2, g m3), voltage intercept points (VIP2, VIP3) and 1-dB compression points for the three structures. The results show that the TLSC has a high analog performance due to more g m and provides 16.3%, 48.4% more gain than SLC and DLSC, respectively and it also provides better linearity. All the results are obtained using the VisualTCAD tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Semiconductors
Journal of Semiconductors PHYSICS, CONDENSED MATTER-
CiteScore
6.70
自引率
9.80%
发文量
119
期刊介绍: Journal of Semiconductors publishes articles that emphasize semiconductor physics, materials, devices, circuits, and related technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信