关于软刚性界面的蠕变问题:正常接触行为分析和蠕变模型的应用

IF 2.3 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yu Tian, Kostas Senetakis
{"title":"关于软刚性界面的蠕变问题:正常接触行为分析和蠕变模型的应用","authors":"Yu Tian,&nbsp;Kostas Senetakis","doi":"10.1007/s10035-023-01377-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we examined at the grain-scale the normal contact behavior of rigid-soft interfaces via a series of micromechanical experiments, in which “rigid” refers to quartz particle and “soft” refers to polymeric granules composed of recycled rubber. Emphasis was placed on the influence of creep by quantifying the creep deformations at the composite interface subjected to long-term loading. The experimental data suggested that the creep behavior of the sand-rubber interface subjected to different normal loads is not deterministic and that there is a correlation between creep and elastic deformations. We also examined the applicability of available creep models to the specific creep problem and the parametric study highlighted the heterogenous features of the creep contact behavior of the sand-rubber samples, which is dependent on the elastic properties of the rubber and the irregular geometry of the contact area. The ground-truth dataset suggested the Burgers model is the most suitable contact model for the creep problem at the sand-rubber interface. The parameters of the Burgers model were also calibrated for further exploration of constitutive models to be used in discrete-based computer analyses. This modeling also provided fundamental insights to understand the physics of the problem.</p></div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"26 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the creep problem of soft-rigid interfaces: analysis of the normal contact behavior and application of creep models\",\"authors\":\"Yu Tian,&nbsp;Kostas Senetakis\",\"doi\":\"10.1007/s10035-023-01377-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we examined at the grain-scale the normal contact behavior of rigid-soft interfaces via a series of micromechanical experiments, in which “rigid” refers to quartz particle and “soft” refers to polymeric granules composed of recycled rubber. Emphasis was placed on the influence of creep by quantifying the creep deformations at the composite interface subjected to long-term loading. The experimental data suggested that the creep behavior of the sand-rubber interface subjected to different normal loads is not deterministic and that there is a correlation between creep and elastic deformations. We also examined the applicability of available creep models to the specific creep problem and the parametric study highlighted the heterogenous features of the creep contact behavior of the sand-rubber samples, which is dependent on the elastic properties of the rubber and the irregular geometry of the contact area. The ground-truth dataset suggested the Burgers model is the most suitable contact model for the creep problem at the sand-rubber interface. The parameters of the Burgers model were also calibrated for further exploration of constitutive models to be used in discrete-based computer analyses. This modeling also provided fundamental insights to understand the physics of the problem.</p></div>\",\"PeriodicalId\":582,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-023-01377-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-023-01377-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们通过一系列微观力学实验,在晶粒尺度上考察了刚软界面的法向接触行为,其中“刚性”指的是石英颗粒,“软”指的是由再生橡胶组成的聚合物颗粒。通过量化复合材料界面在长期载荷作用下的蠕变变形,重点研究了蠕变的影响。试验数据表明,在不同法向载荷作用下,砂-橡胶界面的蠕变行为是不确定的,蠕变与弹性变形之间存在相关性。我们还检验了现有蠕变模型对具体蠕变问题的适用性,参数化研究突出了砂-橡胶样品蠕变接触行为的非均质特征,这取决于橡胶的弹性特性和接触区域的不规则几何形状。地基真实数据表明,Burgers模型是最适合于砂-橡胶界面蠕变问题的接触模型。汉堡模型的参数也被校准,以进一步探索本构模型,用于基于离散的计算机分析。这种建模也为理解问题的物理原理提供了基本的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the creep problem of soft-rigid interfaces: analysis of the normal contact behavior and application of creep models

On the creep problem of soft-rigid interfaces: analysis of the normal contact behavior and application of creep models

In this study, we examined at the grain-scale the normal contact behavior of rigid-soft interfaces via a series of micromechanical experiments, in which “rigid” refers to quartz particle and “soft” refers to polymeric granules composed of recycled rubber. Emphasis was placed on the influence of creep by quantifying the creep deformations at the composite interface subjected to long-term loading. The experimental data suggested that the creep behavior of the sand-rubber interface subjected to different normal loads is not deterministic and that there is a correlation between creep and elastic deformations. We also examined the applicability of available creep models to the specific creep problem and the parametric study highlighted the heterogenous features of the creep contact behavior of the sand-rubber samples, which is dependent on the elastic properties of the rubber and the irregular geometry of the contact area. The ground-truth dataset suggested the Burgers model is the most suitable contact model for the creep problem at the sand-rubber interface. The parameters of the Burgers model were also calibrated for further exploration of constitutive models to be used in discrete-based computer analyses. This modeling also provided fundamental insights to understand the physics of the problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Granular Matter
Granular Matter Materials Science-General Materials Science
CiteScore
4.60
自引率
8.30%
发文量
95
审稿时长
6 months
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信