克奈瑟图中的邻接变换码

IF 0.9 2区 数学 Q2 MATHEMATICS
Dean Crnković, Daniel R. Hawtin, Nina Mostarac, Andrea Švob
{"title":"克奈瑟图中的邻接变换码","authors":"Dean Crnković,&nbsp;Daniel R. Hawtin,&nbsp;Nina Mostarac,&nbsp;Andrea Švob","doi":"10.1016/j.jcta.2023.105850","DOIUrl":null,"url":null,"abstract":"<div><p>A <em>code C</em> is a subset of the vertex set of a graph and <em>C</em> is <em>s-neighbour-transitive</em><span> if its automorphism group </span><span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>C</mi><mo>)</mo></math></span> acts transitively on each of the first <span><math><mi>s</mi><mo>+</mo><mn>1</mn></math></span> parts <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> of the <em>distance partition</em> <span><math><mo>{</mo><mi>C</mi><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mo>}</mo></math></span>, where <em>ρ</em> is the <span><em>covering radius</em></span> of <em>C</em>. While codes have traditionally been studied in the Hamming and Johnson graphs, we consider here codes in the Kneser graphs. Let Ω be the underlying set on which the Kneser graph <span><math><mi>K</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> is defined. Our first main result says that if <em>C</em> is a 2-neighbour-transitive code in <span><math><mi>K</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> such that <em>C</em> has minimum distance at least 5, then <span><math><mi>n</mi><mo>=</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></math></span> (<em>i.e., C</em> is a code in an odd graph) and <em>C</em> lies in a particular infinite family or is one particular sporadic example. We then prove several results when <em>C</em> is a neighbour-transitive code in the Kneser graph <span><math><mi>K</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span>. First, if <span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>C</mi><mo>)</mo></math></span> acts intransitively on Ω we characterise <em>C</em> in terms of certain parameters. We then assume that <span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>C</mi><mo>)</mo></math></span> acts transitively on Ω, first proving that if <em>C</em> has minimum distance at least 3 then either <span><math><mi>K</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> is an odd graph or <span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>C</mi><mo>)</mo></math></span> has a 2-homogeneous (and hence primitive) action on Ω. We then assume that <em>C</em> is a code in an odd graph and <span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>C</mi><mo>)</mo></math></span> acts imprimitively on Ω and characterise <em>C</em> in terms of certain parameters. We give examples in each of these cases and pose several open problems.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"204 ","pages":"Article 105850"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neighbour-transitive codes in Kneser graphs\",\"authors\":\"Dean Crnković,&nbsp;Daniel R. Hawtin,&nbsp;Nina Mostarac,&nbsp;Andrea Švob\",\"doi\":\"10.1016/j.jcta.2023.105850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A <em>code C</em> is a subset of the vertex set of a graph and <em>C</em> is <em>s-neighbour-transitive</em><span> if its automorphism group </span><span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>C</mi><mo>)</mo></math></span> acts transitively on each of the first <span><math><mi>s</mi><mo>+</mo><mn>1</mn></math></span> parts <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> of the <em>distance partition</em> <span><math><mo>{</mo><mi>C</mi><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mo>}</mo></math></span>, where <em>ρ</em> is the <span><em>covering radius</em></span> of <em>C</em>. While codes have traditionally been studied in the Hamming and Johnson graphs, we consider here codes in the Kneser graphs. Let Ω be the underlying set on which the Kneser graph <span><math><mi>K</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> is defined. Our first main result says that if <em>C</em> is a 2-neighbour-transitive code in <span><math><mi>K</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> such that <em>C</em> has minimum distance at least 5, then <span><math><mi>n</mi><mo>=</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></math></span> (<em>i.e., C</em> is a code in an odd graph) and <em>C</em> lies in a particular infinite family or is one particular sporadic example. We then prove several results when <em>C</em> is a neighbour-transitive code in the Kneser graph <span><math><mi>K</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span>. First, if <span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>C</mi><mo>)</mo></math></span> acts intransitively on Ω we characterise <em>C</em> in terms of certain parameters. We then assume that <span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>C</mi><mo>)</mo></math></span> acts transitively on Ω, first proving that if <em>C</em> has minimum distance at least 3 then either <span><math><mi>K</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> is an odd graph or <span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>C</mi><mo>)</mo></math></span> has a 2-homogeneous (and hence primitive) action on Ω. We then assume that <em>C</em> is a code in an odd graph and <span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>C</mi><mo>)</mo></math></span> acts imprimitively on Ω and characterise <em>C</em> in terms of certain parameters. We give examples in each of these cases and pose several open problems.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"204 \",\"pages\":\"Article 105850\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316523001188\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316523001188","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

码C是图的顶点集的一个子集,如果其自同构群Aut(C)传递作用于距离划分{C=C0,C1,…,C}的前s+1部分C0,C1,…,Cs中的每一个,C是s-邻传递的,其中ρ是C的覆盖半径。传统上,码是在Hamming和Johnson图中研究的,这里我们考虑Kneser图中的码。设Ω为定义Kneser图K(n, K)的底层集合。我们的第一个主要结果是,如果C是K(n, K)中的2邻传递码,使得C的最小距离至少为5,则n=2k+1(即,C是奇图中的码),并且C位于特定的无限族或一个特定的零星示例中。然后我们证明了当C是Kneser图K(n, K)中的邻传递码时的几个结果。首先,如果Aut(C)对Ω起不及物作用,我们用某些参数来描述C。然后我们假设Aut(C)传递作用于Ω,首先证明如果C的最小距离至少为3,那么K(n, K)是一个奇图,或者Aut(C)对Ω具有2齐次(因此是原始的)作用。然后我们假设C是奇图中的代码,Aut(C)非原语地作用于Ω,并根据某些参数表征C。我们在每种情况下都给出了例子,并提出了几个悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neighbour-transitive codes in Kneser graphs

A code C is a subset of the vertex set of a graph and C is s-neighbour-transitive if its automorphism group Aut(C) acts transitively on each of the first s+1 parts C0,C1,,Cs of the distance partition {C=C0,C1,,Cρ}, where ρ is the covering radius of C. While codes have traditionally been studied in the Hamming and Johnson graphs, we consider here codes in the Kneser graphs. Let Ω be the underlying set on which the Kneser graph K(n,k) is defined. Our first main result says that if C is a 2-neighbour-transitive code in K(n,k) such that C has minimum distance at least 5, then n=2k+1 (i.e., C is a code in an odd graph) and C lies in a particular infinite family or is one particular sporadic example. We then prove several results when C is a neighbour-transitive code in the Kneser graph K(n,k). First, if Aut(C) acts intransitively on Ω we characterise C in terms of certain parameters. We then assume that Aut(C) acts transitively on Ω, first proving that if C has minimum distance at least 3 then either K(n,k) is an odd graph or Aut(C) has a 2-homogeneous (and hence primitive) action on Ω. We then assume that C is a code in an odd graph and Aut(C) acts imprimitively on Ω and characterise C in terms of certain parameters. We give examples in each of these cases and pose several open problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信