{"title":"用纳米材料调节抗原特异性免疫疗法","authors":"Weifan Ye, Yiwen Jia, Hongze Ren, Yujie Xie, Meihua Yu, Yu Chen","doi":"10.1002/anbr.202300068","DOIUrl":null,"url":null,"abstract":"<p>Nonspecific immunotherapies often induce general immune activation or suppression. Conversely, antigen-specific immunotherapy, which refers to dampening or augmenting adaptive immunity against a disease-specific antigen, increases T-cell target specificity to pathological tissues, thereby reducing side effects on the rest of the immune system. Advances in engineering strategies for nanomaterials have enabled the feasible modulation of their physicochemical features to incorporate antigens and inherently interact with innate immune cells, which remarkably amplifies the orchestration of antigen-specific immune responses against cancer and autoimmune diseases. From this contemporary perspective, the basic principles of antigen-specific immunotherapy are briefly introduced and we elucidate how the latest nanoengineering paradigms regulate the functions of heterogeneous subsets of immune cells, such as antigen-presenting cells, B cells, and regulatory or cytotoxic T cells, promoting antigen-specific immunotherapy to treat autoimmune diseases and cancer. An outlook on prospects and remaining challenges have been discussed for, translating scientific discoveries of powerful nanomaterials into medical advances in antigen-specific immunotherapy, thus offering new treatment modalities for patients with unmet needs.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"3 12","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300068","citationCount":"0","resultStr":"{\"title\":\"Regulation of Antigen-Specific Immunotherapy with Nanomaterials\",\"authors\":\"Weifan Ye, Yiwen Jia, Hongze Ren, Yujie Xie, Meihua Yu, Yu Chen\",\"doi\":\"10.1002/anbr.202300068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nonspecific immunotherapies often induce general immune activation or suppression. Conversely, antigen-specific immunotherapy, which refers to dampening or augmenting adaptive immunity against a disease-specific antigen, increases T-cell target specificity to pathological tissues, thereby reducing side effects on the rest of the immune system. Advances in engineering strategies for nanomaterials have enabled the feasible modulation of their physicochemical features to incorporate antigens and inherently interact with innate immune cells, which remarkably amplifies the orchestration of antigen-specific immune responses against cancer and autoimmune diseases. From this contemporary perspective, the basic principles of antigen-specific immunotherapy are briefly introduced and we elucidate how the latest nanoengineering paradigms regulate the functions of heterogeneous subsets of immune cells, such as antigen-presenting cells, B cells, and regulatory or cytotoxic T cells, promoting antigen-specific immunotherapy to treat autoimmune diseases and cancer. An outlook on prospects and remaining challenges have been discussed for, translating scientific discoveries of powerful nanomaterials into medical advances in antigen-specific immunotherapy, thus offering new treatment modalities for patients with unmet needs.</p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"3 12\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300068\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Regulation of Antigen-Specific Immunotherapy with Nanomaterials
Nonspecific immunotherapies often induce general immune activation or suppression. Conversely, antigen-specific immunotherapy, which refers to dampening or augmenting adaptive immunity against a disease-specific antigen, increases T-cell target specificity to pathological tissues, thereby reducing side effects on the rest of the immune system. Advances in engineering strategies for nanomaterials have enabled the feasible modulation of their physicochemical features to incorporate antigens and inherently interact with innate immune cells, which remarkably amplifies the orchestration of antigen-specific immune responses against cancer and autoimmune diseases. From this contemporary perspective, the basic principles of antigen-specific immunotherapy are briefly introduced and we elucidate how the latest nanoengineering paradigms regulate the functions of heterogeneous subsets of immune cells, such as antigen-presenting cells, B cells, and regulatory or cytotoxic T cells, promoting antigen-specific immunotherapy to treat autoimmune diseases and cancer. An outlook on prospects and remaining challenges have been discussed for, translating scientific discoveries of powerful nanomaterials into medical advances in antigen-specific immunotherapy, thus offering new treatment modalities for patients with unmet needs.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.