克雷因变换和半约束线性关系的半约束扩展

IF 0.8 Q2 MATHEMATICS
Josué I. Rios-Cangas
{"title":"克雷因变换和半约束线性关系的半约束扩展","authors":"Josué I. Rios-Cangas","doi":"10.1007/s43036-023-00308-3","DOIUrl":null,"url":null,"abstract":"<div><p>The Krein transform is the real counterpart of the Cayley transform and gives a one-to-one correspondence between the positive relations and symmetric contractions. It is treated with a slight variation of the usual one, resulting in an involution for linear relations. On the other hand, a semi-bounded linear relation has closed semi-bounded symmetric extensions with semi-bounded selfadjoint extensions. A self-consistent theory of semi-bounded symmetric extensions of semi-bounded linear relations is presented. Using the Krein transform, a formula of positive extensions of quasi-null relations is provided.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Krein transform and semi-bounded extensions of semi-bounded linear relations\",\"authors\":\"Josué I. Rios-Cangas\",\"doi\":\"10.1007/s43036-023-00308-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Krein transform is the real counterpart of the Cayley transform and gives a one-to-one correspondence between the positive relations and symmetric contractions. It is treated with a slight variation of the usual one, resulting in an involution for linear relations. On the other hand, a semi-bounded linear relation has closed semi-bounded symmetric extensions with semi-bounded selfadjoint extensions. A self-consistent theory of semi-bounded symmetric extensions of semi-bounded linear relations is presented. Using the Krein transform, a formula of positive extensions of quasi-null relations is provided.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-023-00308-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-023-00308-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Krein变换是Cayley变换的实对应物,它给出了正关系和对称收缩之间的一对一对应关系。它的处理与通常的略有不同,导致线性关系的对合。另一方面,半有界线性关系具有具有半有界自伴扩展的闭半有界对称扩展。给出了半有界线性关系的半有界对称扩展的自洽理论。利用Krein变换,给出了拟零关系的正扩展公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Krein transform and semi-bounded extensions of semi-bounded linear relations

The Krein transform and semi-bounded extensions of semi-bounded linear relations

The Krein transform is the real counterpart of the Cayley transform and gives a one-to-one correspondence between the positive relations and symmetric contractions. It is treated with a slight variation of the usual one, resulting in an involution for linear relations. On the other hand, a semi-bounded linear relation has closed semi-bounded symmetric extensions with semi-bounded selfadjoint extensions. A self-consistent theory of semi-bounded symmetric extensions of semi-bounded linear relations is presented. Using the Krein transform, a formula of positive extensions of quasi-null relations is provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信