具有表面效应的超薄微米/纳米薄膜的相场断裂模型

IF 5.7 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Peidong Li , Weidong Li , Yu Tan , Haidong Fan , Qingyuan Wang
{"title":"具有表面效应的超薄微米/纳米薄膜的相场断裂模型","authors":"Peidong Li ,&nbsp;Weidong Li ,&nbsp;Yu Tan ,&nbsp;Haidong Fan ,&nbsp;Qingyuan Wang","doi":"10.1016/j.ijengsci.2023.104004","DOIUrl":null,"url":null,"abstract":"<div><p><span>Surface effects usually remarkably affect the mechanical response of ultra-thin micro-/nano-structures. However, the mechanisms of surface effects on the fracture characteristics<span> of ultra-thin films are still not fully understood. To this end, this paper develops a modeling framework to investigate the fracture of ultra-thin films at microscales or below. Such a framework couples the Gurtin–Murdoch theory with a phase-field fracture model, in which the former is adopted to introduce the surface effects, </span></span><em>i.e.</em><span><span>, the surface residual stress and surface elasticity of a thin film, and the latter is able to model crack evolution without requiring predefined crack paths or any criteria. Furthermore, a novel crack driving force<span> is introduced, which encompasses the tensile components of both bulk elastic energy and surface elastic energy. Several numerical examples including the biaxial tension test as well as the single-edge notched tension/shear test are performed. The simulation results indicate that the surface strain energy plays a major role in the total </span></span>elastic strain<span> energy of an ultra-thin film when its thickness is at a micro level<span>, thus demonstrating the significance of surface effects. Moreover, the mode-I fracture test shows that the surface elasticity and surface residual stress have a remarkable influence on the displacement at failure, while for the mode-II fracture test, the surface residual stress significantly influences the fracture characteristics such as the crack path and failure displacement. The developed model paves the way for revealing the fracture mechanisms of ultra-thin micro-/nano-films and conducting their safety assessment.</span></span></span></p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A phase field fracture model for ultra-thin micro-/nano-films with surface effects\",\"authors\":\"Peidong Li ,&nbsp;Weidong Li ,&nbsp;Yu Tan ,&nbsp;Haidong Fan ,&nbsp;Qingyuan Wang\",\"doi\":\"10.1016/j.ijengsci.2023.104004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Surface effects usually remarkably affect the mechanical response of ultra-thin micro-/nano-structures. However, the mechanisms of surface effects on the fracture characteristics<span> of ultra-thin films are still not fully understood. To this end, this paper develops a modeling framework to investigate the fracture of ultra-thin films at microscales or below. Such a framework couples the Gurtin–Murdoch theory with a phase-field fracture model, in which the former is adopted to introduce the surface effects, </span></span><em>i.e.</em><span><span>, the surface residual stress and surface elasticity of a thin film, and the latter is able to model crack evolution without requiring predefined crack paths or any criteria. Furthermore, a novel crack driving force<span> is introduced, which encompasses the tensile components of both bulk elastic energy and surface elastic energy. Several numerical examples including the biaxial tension test as well as the single-edge notched tension/shear test are performed. The simulation results indicate that the surface strain energy plays a major role in the total </span></span>elastic strain<span> energy of an ultra-thin film when its thickness is at a micro level<span>, thus demonstrating the significance of surface effects. Moreover, the mode-I fracture test shows that the surface elasticity and surface residual stress have a remarkable influence on the displacement at failure, while for the mode-II fracture test, the surface residual stress significantly influences the fracture characteristics such as the crack path and failure displacement. The developed model paves the way for revealing the fracture mechanisms of ultra-thin micro-/nano-films and conducting their safety assessment.</span></span></span></p></div>\",\"PeriodicalId\":14053,\"journal\":{\"name\":\"International Journal of Engineering Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020722523001957\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722523001957","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

表面效应通常显著影响超薄微纳米结构的力学响应。然而,表面效应对超薄膜断裂特性的影响机理尚不完全清楚。为此,本文开发了一个模型框架来研究超薄膜在微尺度或以下的断裂。该框架将Gurtin-Murdoch理论与相场断裂模型相结合。相场断裂模型采用Gurtin-Murdoch理论引入薄膜表面残余应力和表面弹性等表面效应,相场断裂模型无需预先定义裂纹路径或任何准则即可模拟裂纹演化。在此基础上,提出了一种包含体弹性能和表面弹性能拉伸分量的裂纹驱动力。进行了包括双轴拉伸试验和单刃缺口拉伸/剪切试验在内的几个数值算例。仿真结果表明,当超薄膜厚度在微观水平时,表面应变能在薄膜总弹性应变能中起主要作用,从而说明了表面效应的重要性。在ⅰ型断裂试验中,表面弹性和表面残余应力对破坏时的位移有显著影响,而在ⅱ型断裂试验中,表面残余应力对裂纹路径和破坏位移等断裂特征有显著影响。该模型为揭示超薄微/纳米薄膜的断裂机理和安全性评价奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A phase field fracture model for ultra-thin micro-/nano-films with surface effects

Surface effects usually remarkably affect the mechanical response of ultra-thin micro-/nano-structures. However, the mechanisms of surface effects on the fracture characteristics of ultra-thin films are still not fully understood. To this end, this paper develops a modeling framework to investigate the fracture of ultra-thin films at microscales or below. Such a framework couples the Gurtin–Murdoch theory with a phase-field fracture model, in which the former is adopted to introduce the surface effects, i.e., the surface residual stress and surface elasticity of a thin film, and the latter is able to model crack evolution without requiring predefined crack paths or any criteria. Furthermore, a novel crack driving force is introduced, which encompasses the tensile components of both bulk elastic energy and surface elastic energy. Several numerical examples including the biaxial tension test as well as the single-edge notched tension/shear test are performed. The simulation results indicate that the surface strain energy plays a major role in the total elastic strain energy of an ultra-thin film when its thickness is at a micro level, thus demonstrating the significance of surface effects. Moreover, the mode-I fracture test shows that the surface elasticity and surface residual stress have a remarkable influence on the displacement at failure, while for the mode-II fracture test, the surface residual stress significantly influences the fracture characteristics such as the crack path and failure displacement. The developed model paves the way for revealing the fracture mechanisms of ultra-thin micro-/nano-films and conducting their safety assessment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Engineering Science
International Journal of Engineering Science 工程技术-工程:综合
CiteScore
11.80
自引率
16.70%
发文量
86
审稿时长
45 days
期刊介绍: The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome. The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process. Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信