{"title":"一种快速、准确且未经校准的机器人穿刺方法","authors":"ShangHong Li, Qiwan Wang, Biao Yan, Rongqian Yang, Yinwei Zhan","doi":"10.1002/rcs.2601","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Robotic puncture system (RPS) consists of an optical tracking system (OTS) and a robotic arm gripping the puncture needle. Typically, the RPS requires hand-eye calibration before the surgery in order to obtain the relative position between the OTS and the robotic arm. However, if there is any displacement or angular deviation in either the robotic arm or the OTS, the calibration results become invalid, necessitating recalibration.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We propose an uncalibrated robotic puncture method that does not rely on the hand-eye relationship of the RPS. By constructing angle and position graph jacobian matrices respectively, and employing Square Root Cubature Kalman Filter for online estimation. This enables obtaining control variables for the robot to perform puncture operations.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>In simulation experiments, our method achieves an average error of 1.3495 mm and an average time consumption of 39.331 s.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Experimental results indicate that our method possesses high accuracy, low time consumption, and strong robustness.</p>\n </section>\n </div>","PeriodicalId":50311,"journal":{"name":"International Journal of Medical Robotics and Computer Assisted Surgery","volume":"20 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast, accurate and uncalibrated robotic puncture method\",\"authors\":\"ShangHong Li, Qiwan Wang, Biao Yan, Rongqian Yang, Yinwei Zhan\",\"doi\":\"10.1002/rcs.2601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Robotic puncture system (RPS) consists of an optical tracking system (OTS) and a robotic arm gripping the puncture needle. Typically, the RPS requires hand-eye calibration before the surgery in order to obtain the relative position between the OTS and the robotic arm. However, if there is any displacement or angular deviation in either the robotic arm or the OTS, the calibration results become invalid, necessitating recalibration.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We propose an uncalibrated robotic puncture method that does not rely on the hand-eye relationship of the RPS. By constructing angle and position graph jacobian matrices respectively, and employing Square Root Cubature Kalman Filter for online estimation. This enables obtaining control variables for the robot to perform puncture operations.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>In simulation experiments, our method achieves an average error of 1.3495 mm and an average time consumption of 39.331 s.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Experimental results indicate that our method possesses high accuracy, low time consumption, and strong robustness.</p>\\n </section>\\n </div>\",\"PeriodicalId\":50311,\"journal\":{\"name\":\"International Journal of Medical Robotics and Computer Assisted Surgery\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Medical Robotics and Computer Assisted Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rcs.2601\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Robotics and Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rcs.2601","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
A fast, accurate and uncalibrated robotic puncture method
Background
Robotic puncture system (RPS) consists of an optical tracking system (OTS) and a robotic arm gripping the puncture needle. Typically, the RPS requires hand-eye calibration before the surgery in order to obtain the relative position between the OTS and the robotic arm. However, if there is any displacement or angular deviation in either the robotic arm or the OTS, the calibration results become invalid, necessitating recalibration.
Methods
We propose an uncalibrated robotic puncture method that does not rely on the hand-eye relationship of the RPS. By constructing angle and position graph jacobian matrices respectively, and employing Square Root Cubature Kalman Filter for online estimation. This enables obtaining control variables for the robot to perform puncture operations.
Results
In simulation experiments, our method achieves an average error of 1.3495 mm and an average time consumption of 39.331 s.
Conclusions
Experimental results indicate that our method possesses high accuracy, low time consumption, and strong robustness.
期刊介绍:
The International Journal of Medical Robotics and Computer Assisted Surgery provides a cross-disciplinary platform for presenting the latest developments in robotics and computer assisted technologies for medical applications. The journal publishes cutting-edge papers and expert reviews, complemented by commentaries, correspondence and conference highlights that stimulate discussion and exchange of ideas. Areas of interest include robotic surgery aids and systems, operative planning tools, medical imaging and visualisation, simulation and navigation, virtual reality, intuitive command and control systems, haptics and sensor technologies. In addition to research and surgical planning studies, the journal welcomes papers detailing clinical trials and applications of computer-assisted workflows and robotic systems in neurosurgery, urology, paediatric, orthopaedic, craniofacial, cardiovascular, thoraco-abdominal, musculoskeletal and visceral surgery. Articles providing critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies, commenting on ease of use, or addressing surgical education and training issues are also encouraged. The journal aims to foster a community that encompasses medical practitioners, researchers, and engineers and computer scientists developing robotic systems and computational tools in academic and commercial environments, with the intention of promoting and developing these exciting areas of medical technology.