盲文识别的视觉和触觉感知技术

IF 4.7 Q2 NANOSCIENCE & NANOTECHNOLOGY
Byeong-Sun Park, Seong-Min Im, Hojun Lee, Young Tack Lee, Changjoo Nam, Sungeun Hong, Min-gu Kim
{"title":"盲文识别的视觉和触觉感知技术","authors":"Byeong-Sun Park,&nbsp;Seong-Min Im,&nbsp;Hojun Lee,&nbsp;Young Tack Lee,&nbsp;Changjoo Nam,&nbsp;Sungeun Hong,&nbsp;Min-gu Kim","doi":"10.1186/s40486-023-00191-w","DOIUrl":null,"url":null,"abstract":"<div><p>In the case of a visually impaired person, literal communication often relies on braille, a system predominantly dependent on vision and touch. This study entailed the development of a visual and tactile perception technique for braille character recognition. In the visual perception approach, a braille character recognition was performed using a deep learning model (Faster R-CNN–FPN–ResNet-50), based on custom-made braille dataset collected through data augmentation and preprocessing. The attained performance was indicated by an mAP50 of 94.8 and mAP75 of 70.4 on the generated dataset. In the tactile perception approach, a braille character recognition was performed using a flexible capacitive pressure sensor array. The sensor size and density were designed according to braille standards, and a single sensor with a size of 1.5 mm × 1.5 mm was manufactured into a 5 × 5 sensor array by using a printing technique. Additionally, the sensitivity was improved by incorporating a pressure-sensitive micro dome-structured array layer. Finally, braille character recognition was visualized in the form of a video-based heatmap. These results will potentially be a cornerstone in developing assistive technology for the visually impaired through the fusion of visual-tactile sensing technology.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"11 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-023-00191-w","citationCount":"0","resultStr":"{\"title\":\"Visual and tactile perception techniques for braille recognition\",\"authors\":\"Byeong-Sun Park,&nbsp;Seong-Min Im,&nbsp;Hojun Lee,&nbsp;Young Tack Lee,&nbsp;Changjoo Nam,&nbsp;Sungeun Hong,&nbsp;Min-gu Kim\",\"doi\":\"10.1186/s40486-023-00191-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the case of a visually impaired person, literal communication often relies on braille, a system predominantly dependent on vision and touch. This study entailed the development of a visual and tactile perception technique for braille character recognition. In the visual perception approach, a braille character recognition was performed using a deep learning model (Faster R-CNN–FPN–ResNet-50), based on custom-made braille dataset collected through data augmentation and preprocessing. The attained performance was indicated by an mAP50 of 94.8 and mAP75 of 70.4 on the generated dataset. In the tactile perception approach, a braille character recognition was performed using a flexible capacitive pressure sensor array. The sensor size and density were designed according to braille standards, and a single sensor with a size of 1.5 mm × 1.5 mm was manufactured into a 5 × 5 sensor array by using a printing technique. Additionally, the sensitivity was improved by incorporating a pressure-sensitive micro dome-structured array layer. Finally, braille character recognition was visualized in the form of a video-based heatmap. These results will potentially be a cornerstone in developing assistive technology for the visually impaired through the fusion of visual-tactile sensing technology.</p></div>\",\"PeriodicalId\":704,\"journal\":{\"name\":\"Micro and Nano Systems Letters\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-023-00191-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40486-023-00191-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40486-023-00191-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

对于视力受损的人来说,文字交流通常依赖于盲文,这是一种主要依赖视觉和触觉的系统。这项研究涉及盲文字符识别的视觉和触觉感知技术的发展。在视觉感知方法中,使用深度学习模型(Faster R-CNN-FPN-ResNet-50)进行盲文字符识别,该模型基于定制的盲文数据集,通过数据增强和预处理收集。在生成的数据集上,mAP50为94.8,mAP75为70.4。在触觉感知方法中,使用柔性电容式压力传感器阵列进行盲文字符识别。根据盲文标准设计传感器尺寸和密度,利用打印技术将单个1.5 mm × 1.5 mm尺寸的传感器制作成5 × 5的传感器阵列。此外,通过加入压敏微圆顶结构阵列层,灵敏度得到了提高。最后,以视频热图的形式将盲文字符识别可视化。这些结果将有可能成为通过视觉触觉传感技术融合开发视障人士辅助技术的基石。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual and tactile perception techniques for braille recognition

In the case of a visually impaired person, literal communication often relies on braille, a system predominantly dependent on vision and touch. This study entailed the development of a visual and tactile perception technique for braille character recognition. In the visual perception approach, a braille character recognition was performed using a deep learning model (Faster R-CNN–FPN–ResNet-50), based on custom-made braille dataset collected through data augmentation and preprocessing. The attained performance was indicated by an mAP50 of 94.8 and mAP75 of 70.4 on the generated dataset. In the tactile perception approach, a braille character recognition was performed using a flexible capacitive pressure sensor array. The sensor size and density were designed according to braille standards, and a single sensor with a size of 1.5 mm × 1.5 mm was manufactured into a 5 × 5 sensor array by using a printing technique. Additionally, the sensitivity was improved by incorporating a pressure-sensitive micro dome-structured array layer. Finally, braille character recognition was visualized in the form of a video-based heatmap. These results will potentially be a cornerstone in developing assistive technology for the visually impaired through the fusion of visual-tactile sensing technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micro and Nano Systems Letters
Micro and Nano Systems Letters Engineering-Biomedical Engineering
CiteScore
10.60
自引率
5.60%
发文量
16
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信