God’spower Richard Okoh, Ellen Ariel, David Whitmore, Paul F. Horwood
{"title":"自由活动的敏捷小袋鼠新型粪便病毒的元基因组和分子检测","authors":"God’spower Richard Okoh, Ellen Ariel, David Whitmore, Paul F. Horwood","doi":"10.1007/s10393-023-01659-2","DOIUrl":null,"url":null,"abstract":"<p>The agile wallaby (<i>Notamacropus agilis</i>) is one of the most abundant marsupial species in northern Queensland and a competent host for the zoonotic Ross River virus. Despite their increased proximity and interactions with humans, little is known about the viruses carried by these animals, and whether any are of conservation or zoonotic importance. Metagenomics and molecular techniques were used in a complementary manner to identify and characterize novel viruses in the fecal samples of free-ranging agile wallabies. We detected a variety of novel marsupial-related viral species including agile wallaby atadenovirus 1, agile wallaby chaphamaparvovirus 1–2, agile wallaby polyomavirus 1–2, agile wallaby associated picobirnavirus 1–9, and a known macropod gammaherpesvirus 3. Phylogenetic analyses indicate that most of these novel viruses would have co-evolved with their hosts (agile wallabies). Additionally, non-marsupial viruses that infect bacteria (phages), plants, insects, and other eukaryotes were identified. This study highlighted the utility of non-invasive sampling as well as the integration of broad-based molecular assays (consensus PCR and next generation sequencing) for monitoring the emergence of potential pathogenic viruses in wildlife species. Furthermore, the novel marsupial viruses identified in this study will enrich the diversity of knowledge about marsupial viruses, and may be useful for developing diagnostics and vaccines.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metagenomic and Molecular Detection of Novel Fecal Viruses in Free-Ranging Agile Wallabies\",\"authors\":\"God’spower Richard Okoh, Ellen Ariel, David Whitmore, Paul F. Horwood\",\"doi\":\"10.1007/s10393-023-01659-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The agile wallaby (<i>Notamacropus agilis</i>) is one of the most abundant marsupial species in northern Queensland and a competent host for the zoonotic Ross River virus. Despite their increased proximity and interactions with humans, little is known about the viruses carried by these animals, and whether any are of conservation or zoonotic importance. Metagenomics and molecular techniques were used in a complementary manner to identify and characterize novel viruses in the fecal samples of free-ranging agile wallabies. We detected a variety of novel marsupial-related viral species including agile wallaby atadenovirus 1, agile wallaby chaphamaparvovirus 1–2, agile wallaby polyomavirus 1–2, agile wallaby associated picobirnavirus 1–9, and a known macropod gammaherpesvirus 3. Phylogenetic analyses indicate that most of these novel viruses would have co-evolved with their hosts (agile wallabies). Additionally, non-marsupial viruses that infect bacteria (phages), plants, insects, and other eukaryotes were identified. This study highlighted the utility of non-invasive sampling as well as the integration of broad-based molecular assays (consensus PCR and next generation sequencing) for monitoring the emergence of potential pathogenic viruses in wildlife species. Furthermore, the novel marsupial viruses identified in this study will enrich the diversity of knowledge about marsupial viruses, and may be useful for developing diagnostics and vaccines.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10393-023-01659-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10393-023-01659-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Metagenomic and Molecular Detection of Novel Fecal Viruses in Free-Ranging Agile Wallabies
The agile wallaby (Notamacropus agilis) is one of the most abundant marsupial species in northern Queensland and a competent host for the zoonotic Ross River virus. Despite their increased proximity and interactions with humans, little is known about the viruses carried by these animals, and whether any are of conservation or zoonotic importance. Metagenomics and molecular techniques were used in a complementary manner to identify and characterize novel viruses in the fecal samples of free-ranging agile wallabies. We detected a variety of novel marsupial-related viral species including agile wallaby atadenovirus 1, agile wallaby chaphamaparvovirus 1–2, agile wallaby polyomavirus 1–2, agile wallaby associated picobirnavirus 1–9, and a known macropod gammaherpesvirus 3. Phylogenetic analyses indicate that most of these novel viruses would have co-evolved with their hosts (agile wallabies). Additionally, non-marsupial viruses that infect bacteria (phages), plants, insects, and other eukaryotes were identified. This study highlighted the utility of non-invasive sampling as well as the integration of broad-based molecular assays (consensus PCR and next generation sequencing) for monitoring the emergence of potential pathogenic viruses in wildlife species. Furthermore, the novel marsupial viruses identified in this study will enrich the diversity of knowledge about marsupial viruses, and may be useful for developing diagnostics and vaccines.