Najihah Mohd Noor, Ts. Dr. Amal A. M. Elgharbawy, Assoc. Prof. Dr. Muhammad Moniruzzaman, Prof. Masahiro Goto
{"title":"释放离子液体的抗癌潜力","authors":"Najihah Mohd Noor, Ts. Dr. Amal A. M. Elgharbawy, Assoc. Prof. Dr. Muhammad Moniruzzaman, Prof. Masahiro Goto","doi":"10.1002/cben.202300051","DOIUrl":null,"url":null,"abstract":"<p>Despite advances in cancer treatment, many types of cancer still have high mortality rates, and the existing therapies can cause considerable side effects. Therefore, discovering new therapies, especially ones with fewer side effects, is desirable to improve the outcomes for cancer patients. Ionic liquids (ILs) have emerged as potential candidates for cancer treatment because of their particular physicochemical properties, which can be tailored for specific applications. In recent years, interest in exploring the potential of ILs in cancer treatment has been growing, and several studies have demonstrated the effectiveness of ILs in inhibiting cancer-cell growth. This review provides insight into the anticancer potential of ILs, exploring the diverse applications and the underlying mechanisms behind the cytotoxicity toward cancer cells of ILs. Understanding the mechanisms behind the cytotoxicity of ILs can aid in the design and optimization of IL-based cancer therapies. By focusing on specific pathways and targets, IL-based cancer therapies may be developed that offer new possibilities for treating this devastating disease.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 2","pages":"231-252"},"PeriodicalIF":6.2000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking the Anticancer Potential of Ionic Liquids\",\"authors\":\"Najihah Mohd Noor, Ts. Dr. Amal A. M. Elgharbawy, Assoc. Prof. Dr. Muhammad Moniruzzaman, Prof. Masahiro Goto\",\"doi\":\"10.1002/cben.202300051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite advances in cancer treatment, many types of cancer still have high mortality rates, and the existing therapies can cause considerable side effects. Therefore, discovering new therapies, especially ones with fewer side effects, is desirable to improve the outcomes for cancer patients. Ionic liquids (ILs) have emerged as potential candidates for cancer treatment because of their particular physicochemical properties, which can be tailored for specific applications. In recent years, interest in exploring the potential of ILs in cancer treatment has been growing, and several studies have demonstrated the effectiveness of ILs in inhibiting cancer-cell growth. This review provides insight into the anticancer potential of ILs, exploring the diverse applications and the underlying mechanisms behind the cytotoxicity toward cancer cells of ILs. Understanding the mechanisms behind the cytotoxicity of ILs can aid in the design and optimization of IL-based cancer therapies. By focusing on specific pathways and targets, IL-based cancer therapies may be developed that offer new possibilities for treating this devastating disease.</p>\",\"PeriodicalId\":48623,\"journal\":{\"name\":\"ChemBioEng Reviews\",\"volume\":\"11 2\",\"pages\":\"231-252\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioEng Reviews\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cben.202300051\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioEng Reviews","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cben.202300051","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Unlocking the Anticancer Potential of Ionic Liquids
Despite advances in cancer treatment, many types of cancer still have high mortality rates, and the existing therapies can cause considerable side effects. Therefore, discovering new therapies, especially ones with fewer side effects, is desirable to improve the outcomes for cancer patients. Ionic liquids (ILs) have emerged as potential candidates for cancer treatment because of their particular physicochemical properties, which can be tailored for specific applications. In recent years, interest in exploring the potential of ILs in cancer treatment has been growing, and several studies have demonstrated the effectiveness of ILs in inhibiting cancer-cell growth. This review provides insight into the anticancer potential of ILs, exploring the diverse applications and the underlying mechanisms behind the cytotoxicity toward cancer cells of ILs. Understanding the mechanisms behind the cytotoxicity of ILs can aid in the design and optimization of IL-based cancer therapies. By focusing on specific pathways and targets, IL-based cancer therapies may be developed that offer new possibilities for treating this devastating disease.
ChemBioEng ReviewsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.90
自引率
2.10%
发文量
45
期刊介绍:
Launched in 2014, ChemBioEng Reviews is aimed to become a top-ranking journal publishing review articles offering information on significant developments and provide fundamental knowledge of important topics in the fields of chemical engineering and biotechnology. The journal supports academics and researchers in need for concise, easy to access information on specific topics. The articles cover all fields of (bio-) chemical engineering and technology, e.g.,