{"title":"腕足动物的故事永无止境:从短尾鼠到无尾灵长类动物","authors":"","doi":"10.1016/j.cdev.2023.203896","DOIUrl":null,"url":null,"abstract":"<div><p>The history of developmental biology starts from the almost simultaneous discoveries of the Organizer of axial structures in amphibians by Spemann and Mangold in Freiburg and of the Brachyury mutant in mammals by the Dobrovolskaya-Zavadskaya laboratory at the Curie Institute and its follow-up studies in the Leslie Dunn laboratory at Columbia University. Following the Organizer's discovery, the inductive activity of several other embryonic tissues was found, including that of the ear primordium by Boris Balinsky in Kiev. Initially, the experimental embryological and genetic lines of research existed independently of each other, but after they met at the bench of Salome Gluecksohn, they strengthened and cross-fertilized each other, eventually leading to developmental genetics, which later became known as developmental biology. It appears that the regulatory activities of Brachyury and related T-box proteins in general are at the heart of the development of all vertebrates. These activities are fundamental and have been discovered in several model organisms subjected to mutagenesis, exemplified by the story of George Streisinger's discovery of the <em>no tail</em> mutant in zebrafish. This essay describes the history of Brachyury studies, their connection to an idea of embryonic induction by Organizer, and an impact of Brachyury and related genes on various fields of research from embryology and cell biology to medical genetics and evolutionary theory.</p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"178 ","pages":"Article 203896"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667290123000724/pdfft?md5=c0e9d0cc5d7d0ab3680c47888fcbe3d1&pid=1-s2.0-S2667290123000724-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Never-ending story of Brachyury: From short-tailed mice to tailless primates\",\"authors\":\"\",\"doi\":\"10.1016/j.cdev.2023.203896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The history of developmental biology starts from the almost simultaneous discoveries of the Organizer of axial structures in amphibians by Spemann and Mangold in Freiburg and of the Brachyury mutant in mammals by the Dobrovolskaya-Zavadskaya laboratory at the Curie Institute and its follow-up studies in the Leslie Dunn laboratory at Columbia University. Following the Organizer's discovery, the inductive activity of several other embryonic tissues was found, including that of the ear primordium by Boris Balinsky in Kiev. Initially, the experimental embryological and genetic lines of research existed independently of each other, but after they met at the bench of Salome Gluecksohn, they strengthened and cross-fertilized each other, eventually leading to developmental genetics, which later became known as developmental biology. It appears that the regulatory activities of Brachyury and related T-box proteins in general are at the heart of the development of all vertebrates. These activities are fundamental and have been discovered in several model organisms subjected to mutagenesis, exemplified by the story of George Streisinger's discovery of the <em>no tail</em> mutant in zebrafish. This essay describes the history of Brachyury studies, their connection to an idea of embryonic induction by Organizer, and an impact of Brachyury and related genes on various fields of research from embryology and cell biology to medical genetics and evolutionary theory.</p></div>\",\"PeriodicalId\":36123,\"journal\":{\"name\":\"Cells and Development\",\"volume\":\"178 \",\"pages\":\"Article 203896\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667290123000724/pdfft?md5=c0e9d0cc5d7d0ab3680c47888fcbe3d1&pid=1-s2.0-S2667290123000724-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells and Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667290123000724\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells and Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667290123000724","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Never-ending story of Brachyury: From short-tailed mice to tailless primates
The history of developmental biology starts from the almost simultaneous discoveries of the Organizer of axial structures in amphibians by Spemann and Mangold in Freiburg and of the Brachyury mutant in mammals by the Dobrovolskaya-Zavadskaya laboratory at the Curie Institute and its follow-up studies in the Leslie Dunn laboratory at Columbia University. Following the Organizer's discovery, the inductive activity of several other embryonic tissues was found, including that of the ear primordium by Boris Balinsky in Kiev. Initially, the experimental embryological and genetic lines of research existed independently of each other, but after they met at the bench of Salome Gluecksohn, they strengthened and cross-fertilized each other, eventually leading to developmental genetics, which later became known as developmental biology. It appears that the regulatory activities of Brachyury and related T-box proteins in general are at the heart of the development of all vertebrates. These activities are fundamental and have been discovered in several model organisms subjected to mutagenesis, exemplified by the story of George Streisinger's discovery of the no tail mutant in zebrafish. This essay describes the history of Brachyury studies, their connection to an idea of embryonic induction by Organizer, and an impact of Brachyury and related genes on various fields of research from embryology and cell biology to medical genetics and evolutionary theory.