{"title":"评估捕食者-猎物系统的热生态位重叠:蜘蛛在追捕猎物时会选择次优温度吗?","authors":"Andrés Taucare-Ríos, Weixing Chia-Daponte, Cristofer Gaete-Collao","doi":"10.1111/phen.12426","DOIUrl":null,"url":null,"abstract":"<p>Ectotherm predators and their prey could potentially respond differently to habitat temperatures. Predators might select higher temperatures to increase their probability of capture while prey could select lower or higher temperatures that may enhance their escape capability. We used a combination of field and laboratory analyses to characterise the thermal niches of predator species and their potential arthropod prey. We studied a predator–prey system in northern Chile using a common desert-dwelling spider <i>Loxosceles laeta</i> and three potential prey: a tenebrionid beetle <i>Psammetichus costatus</i> (Coleoptera), <i>Pycnoscelus surinamensis</i> (Blattodea) and <i>Porcellio laevis</i> (Isopoda). Results showed that the predator <i>L. laeta</i> selects warmer temperatures (<i>T</i><sub><i>p</i></sub> = 27.22 ± 4.87°C) in laboratory and lower temperatures in field conditions (<i>T</i><sub><i>s</i></sub> = 20.8 ± 1.59°C), with low temperatures in the morning and high temperatures at night. The three prey species had lower and different preferred temperatures than the predator in laboratory conditions. However, we found a high overlap in the thermal niche between the predator and their prey in field conditions, whereby the predator selected similar temperatures to its prey, one exception being <i>P. laevis</i> that chooses completely different habitat temperatures. This suggests that predators look for their prey in places with low temperatures that are not thermally suitable for them, whereas the prey may use this strategy of selecting low temperatures to evade potential predators.</p>","PeriodicalId":20081,"journal":{"name":"Physiological Entomology","volume":"49 1","pages":"49-57"},"PeriodicalIF":1.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating thermal niche overlap of a predator–prey system: Do spiders choose suboptimal temperatures in pursuit of prey?\",\"authors\":\"Andrés Taucare-Ríos, Weixing Chia-Daponte, Cristofer Gaete-Collao\",\"doi\":\"10.1111/phen.12426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ectotherm predators and their prey could potentially respond differently to habitat temperatures. Predators might select higher temperatures to increase their probability of capture while prey could select lower or higher temperatures that may enhance their escape capability. We used a combination of field and laboratory analyses to characterise the thermal niches of predator species and their potential arthropod prey. We studied a predator–prey system in northern Chile using a common desert-dwelling spider <i>Loxosceles laeta</i> and three potential prey: a tenebrionid beetle <i>Psammetichus costatus</i> (Coleoptera), <i>Pycnoscelus surinamensis</i> (Blattodea) and <i>Porcellio laevis</i> (Isopoda). Results showed that the predator <i>L. laeta</i> selects warmer temperatures (<i>T</i><sub><i>p</i></sub> = 27.22 ± 4.87°C) in laboratory and lower temperatures in field conditions (<i>T</i><sub><i>s</i></sub> = 20.8 ± 1.59°C), with low temperatures in the morning and high temperatures at night. The three prey species had lower and different preferred temperatures than the predator in laboratory conditions. However, we found a high overlap in the thermal niche between the predator and their prey in field conditions, whereby the predator selected similar temperatures to its prey, one exception being <i>P. laevis</i> that chooses completely different habitat temperatures. This suggests that predators look for their prey in places with low temperatures that are not thermally suitable for them, whereas the prey may use this strategy of selecting low temperatures to evade potential predators.</p>\",\"PeriodicalId\":20081,\"journal\":{\"name\":\"Physiological Entomology\",\"volume\":\"49 1\",\"pages\":\"49-57\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological Entomology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/phen.12426\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/phen.12426","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Evaluating thermal niche overlap of a predator–prey system: Do spiders choose suboptimal temperatures in pursuit of prey?
Ectotherm predators and their prey could potentially respond differently to habitat temperatures. Predators might select higher temperatures to increase their probability of capture while prey could select lower or higher temperatures that may enhance their escape capability. We used a combination of field and laboratory analyses to characterise the thermal niches of predator species and their potential arthropod prey. We studied a predator–prey system in northern Chile using a common desert-dwelling spider Loxosceles laeta and three potential prey: a tenebrionid beetle Psammetichus costatus (Coleoptera), Pycnoscelus surinamensis (Blattodea) and Porcellio laevis (Isopoda). Results showed that the predator L. laeta selects warmer temperatures (Tp = 27.22 ± 4.87°C) in laboratory and lower temperatures in field conditions (Ts = 20.8 ± 1.59°C), with low temperatures in the morning and high temperatures at night. The three prey species had lower and different preferred temperatures than the predator in laboratory conditions. However, we found a high overlap in the thermal niche between the predator and their prey in field conditions, whereby the predator selected similar temperatures to its prey, one exception being P. laevis that chooses completely different habitat temperatures. This suggests that predators look for their prey in places with low temperatures that are not thermally suitable for them, whereas the prey may use this strategy of selecting low temperatures to evade potential predators.
期刊介绍:
Physiological Entomology broadly considers “how insects work” and how they are adapted to their environments at all levels from genes and molecules, anatomy and structure, to behaviour and interactions of whole organisms. We publish high quality experiment based papers reporting research on insects and other arthropods as well as occasional reviews. The journal thus has a focus on physiological and experimental approaches to understanding how insects function. The broad subject coverage of the Journal includes, but is not limited to:
-experimental analysis of behaviour-
behavioural physiology and biochemistry-
neurobiology and sensory physiology-
general physiology-
circadian rhythms and photoperiodism-
chemical ecology