从分子、生理和形态学层面探索作物光合作用对二氧化碳升高的反应,以提高作物产量

Daisuke Sugiura , Yin Wang , Masaru Kono , Yusuke Mizokami
{"title":"从分子、生理和形态学层面探索作物光合作用对二氧化碳升高的反应,以提高作物产量","authors":"Daisuke Sugiura ,&nbsp;Yin Wang ,&nbsp;Masaru Kono ,&nbsp;Yusuke Mizokami","doi":"10.1016/j.crope.2023.11.006","DOIUrl":null,"url":null,"abstract":"<div><p>Exploring the impact of elevated CO<sub>2</sub> on photosynthesis is vital for understanding plant responses to climate change. In C<sub>3</sub> plants, elevated CO<sub>2</sub> concentrations generally enhance CO<sub>2</sub> assimilation by increasing chloroplast CO<sub>2</sub> concentration. However, the underlying mechanisms are complex since photosynthesis involves multiple physiological processes operating at different time scales and varying among plant species. In this review, we focused on the responses of key photosynthetic processes in crop, including CO<sub>2</sub> diffusion conductances such as stomatal conductance (g<sub>s</sub>), mesophyll conductance (g<sub>m</sub>), photochemical reactions, the Calvin-Benson cycle, and related metabolic pathways. Short-term exposure to elevated CO<sub>2</sub> often decreases g<sub>s</sub> and g<sub>m</sub> while increasing the electron transport rate. However, long-term exposure to elevated CO<sub>2</sub> can decrease photosynthetic capacity due to coordinated downregulation of multiple processes, particularly when the sink‒source ratio declines. To enhance plant productivity under elevated CO<sub>2</sub>, it is crucial to maintain or enhance sink activity and understand the CO<sub>2</sub> response mechanisms at the molecular, physiological, and morphological levels. This review provides an update on the short- and long-term responses of g<sub>s</sub>, g<sub>m</sub>, electron transport system, and carbon assimilation metabolism to elevated CO<sub>2</sub>. Furthermore, it offers a perspective on improving crop production in the future with elevated CO<sub>2</sub> levels.</p></div>","PeriodicalId":100340,"journal":{"name":"Crop and Environment","volume":"3 2","pages":"Pages 75-83"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773126X23000771/pdfft?md5=afbd7b6ef8ba441d6024e80e4fc87563&pid=1-s2.0-S2773126X23000771-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring the responses of crop photosynthesis to CO2 elevation at the molecular, physiological, and morphological levels toward increasing crop production\",\"authors\":\"Daisuke Sugiura ,&nbsp;Yin Wang ,&nbsp;Masaru Kono ,&nbsp;Yusuke Mizokami\",\"doi\":\"10.1016/j.crope.2023.11.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Exploring the impact of elevated CO<sub>2</sub> on photosynthesis is vital for understanding plant responses to climate change. In C<sub>3</sub> plants, elevated CO<sub>2</sub> concentrations generally enhance CO<sub>2</sub> assimilation by increasing chloroplast CO<sub>2</sub> concentration. However, the underlying mechanisms are complex since photosynthesis involves multiple physiological processes operating at different time scales and varying among plant species. In this review, we focused on the responses of key photosynthetic processes in crop, including CO<sub>2</sub> diffusion conductances such as stomatal conductance (g<sub>s</sub>), mesophyll conductance (g<sub>m</sub>), photochemical reactions, the Calvin-Benson cycle, and related metabolic pathways. Short-term exposure to elevated CO<sub>2</sub> often decreases g<sub>s</sub> and g<sub>m</sub> while increasing the electron transport rate. However, long-term exposure to elevated CO<sub>2</sub> can decrease photosynthetic capacity due to coordinated downregulation of multiple processes, particularly when the sink‒source ratio declines. To enhance plant productivity under elevated CO<sub>2</sub>, it is crucial to maintain or enhance sink activity and understand the CO<sub>2</sub> response mechanisms at the molecular, physiological, and morphological levels. This review provides an update on the short- and long-term responses of g<sub>s</sub>, g<sub>m</sub>, electron transport system, and carbon assimilation metabolism to elevated CO<sub>2</sub>. Furthermore, it offers a perspective on improving crop production in the future with elevated CO<sub>2</sub> levels.</p></div>\",\"PeriodicalId\":100340,\"journal\":{\"name\":\"Crop and Environment\",\"volume\":\"3 2\",\"pages\":\"Pages 75-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773126X23000771/pdfft?md5=afbd7b6ef8ba441d6024e80e4fc87563&pid=1-s2.0-S2773126X23000771-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773126X23000771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773126X23000771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

探索升高的二氧化碳对光合作用的影响对于了解植物对气候变化的反应至关重要。在 C3 植物中,二氧化碳浓度升高通常会通过增加叶绿体的二氧化碳浓度来增强二氧化碳同化作用。然而,由于光合作用涉及在不同时间尺度上运行的多个生理过程,而且植物物种之间存在差异,因此其基本机制非常复杂。在本综述中,我们重点研究了作物中关键光合过程的反应,包括二氧化碳扩散传导(如气孔传导(gs)、叶绿体中层传导(gm))、光化学反应、卡尔文-本森循环以及相关代谢途径。短期暴露于高浓度 CO2 通常会降低 gs 和 gm,同时提高电子传输速率。然而,长期暴露于高浓度 CO2 环境中会降低光合作用能力,这是因为多个过程协调下调,尤其是当汇-源比率下降时。要提高高浓度 CO2 条件下的植物生产力,关键是要保持或提高吸收汇活性,并从分子、生理和形态学层面了解 CO2 响应机制。本综述提供了有关 gs、gm、电子传递系统和碳同化代谢对高浓度 CO2 的短期和长期响应的最新信息。此外,它还为未来利用升高的 CO2 水平提高作物产量提供了一个视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the responses of crop photosynthesis to CO2 elevation at the molecular, physiological, and morphological levels toward increasing crop production

Exploring the impact of elevated CO2 on photosynthesis is vital for understanding plant responses to climate change. In C3 plants, elevated CO2 concentrations generally enhance CO2 assimilation by increasing chloroplast CO2 concentration. However, the underlying mechanisms are complex since photosynthesis involves multiple physiological processes operating at different time scales and varying among plant species. In this review, we focused on the responses of key photosynthetic processes in crop, including CO2 diffusion conductances such as stomatal conductance (gs), mesophyll conductance (gm), photochemical reactions, the Calvin-Benson cycle, and related metabolic pathways. Short-term exposure to elevated CO2 often decreases gs and gm while increasing the electron transport rate. However, long-term exposure to elevated CO2 can decrease photosynthetic capacity due to coordinated downregulation of multiple processes, particularly when the sink‒source ratio declines. To enhance plant productivity under elevated CO2, it is crucial to maintain or enhance sink activity and understand the CO2 response mechanisms at the molecular, physiological, and morphological levels. This review provides an update on the short- and long-term responses of gs, gm, electron transport system, and carbon assimilation metabolism to elevated CO2. Furthermore, it offers a perspective on improving crop production in the future with elevated CO2 levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信