利用仿真生成用于去耦电容器放置的人工智能模块

IF 0.6 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Nima Ghafarian Shoaee, Zouhair Nezhi, Werner John, Ralf Brüning, Jürgen Götze
{"title":"利用仿真生成用于去耦电容器放置的人工智能模块","authors":"Nima Ghafarian Shoaee, Zouhair Nezhi, Werner John, Ralf Brüning, Jürgen Götze","doi":"10.5194/ars-21-49-2023","DOIUrl":null,"url":null,"abstract":"Abstract. The effects of parameters affecting the input impedance of a power delivery network (PDN) are investigated. It is considered that the size of the power plane and the number of associated planes in the PCB layout, apart from the decoupling capacitor, have an effect on the impedance behavior within a certain frequency range. An artificial neural network (ANN) is trained using the generated data utilizing a process to generate suitable input for training a machine learning (ML) module, which is able to predict the impedance profile of the PDN. In order to obtain a more accurate prediction, Bayesian optimization is implemented and the results are compared to commercial power integrity (PI) software.\n","PeriodicalId":45093,"journal":{"name":"Advances in Radio Science","volume":"129 4","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating AI modules for decoupling capacitor placement using simulation\",\"authors\":\"Nima Ghafarian Shoaee, Zouhair Nezhi, Werner John, Ralf Brüning, Jürgen Götze\",\"doi\":\"10.5194/ars-21-49-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The effects of parameters affecting the input impedance of a power delivery network (PDN) are investigated. It is considered that the size of the power plane and the number of associated planes in the PCB layout, apart from the decoupling capacitor, have an effect on the impedance behavior within a certain frequency range. An artificial neural network (ANN) is trained using the generated data utilizing a process to generate suitable input for training a machine learning (ML) module, which is able to predict the impedance profile of the PDN. In order to obtain a more accurate prediction, Bayesian optimization is implemented and the results are compared to commercial power integrity (PI) software.\\n\",\"PeriodicalId\":45093,\"journal\":{\"name\":\"Advances in Radio Science\",\"volume\":\"129 4\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Radio Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/ars-21-49-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Radio Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/ars-21-49-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要。研究了各种参数对输电网输入阻抗的影响。认为在一定频率范围内,除去耦电容外,PCB布局中电源平面的大小和关联平面的数量对阻抗行为也有影响。人工神经网络(ANN)使用生成的数据进行训练,利用一个过程生成合适的输入来训练机器学习(ML)模块,该模块能够预测PDN的阻抗分布。为了获得更准确的预测结果,采用贝叶斯优化方法,并将结果与商用功率完整性(PI)软件进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating AI modules for decoupling capacitor placement using simulation
Abstract. The effects of parameters affecting the input impedance of a power delivery network (PDN) are investigated. It is considered that the size of the power plane and the number of associated planes in the PCB layout, apart from the decoupling capacitor, have an effect on the impedance behavior within a certain frequency range. An artificial neural network (ANN) is trained using the generated data utilizing a process to generate suitable input for training a machine learning (ML) module, which is able to predict the impedance profile of the PDN. In order to obtain a more accurate prediction, Bayesian optimization is implemented and the results are compared to commercial power integrity (PI) software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Radio Science
Advances in Radio Science ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
0.90
自引率
0.00%
发文量
3
审稿时长
45 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信