{"title":"应用于掺杂 Eu3+ 的化合物的分析晶体场模型","authors":"Marcos A. Couto dos Santos","doi":"10.1016/j.omx.2023.100279","DOIUrl":null,"url":null,"abstract":"<div><p>The point charge electrostatic model (PCEM) and the simple overlap model (SOM), both purely analytical crystal field models, are being briefly revisited, in order to show the evolution of their application to Eu doped compounds. Calculations are made through the method of equivalent nearest neighbours (MENN), and applied to the Eu(dipivaloylmethanate)<sub>3</sub>1,10-phenanthroline [Eu(DPM)<sub>3</sub>o-phen] complex, with the aim of discussing the Eu–O and Eu–N interactions. The charge of the Eu ion is calculated using the Batista-Longo improved model (BLIM) to give g<sub>BLIM</sub> = 3,64e around the Eu-NN midpoint. The <sup>7</sup>F<sub>1</sub> crystal-field levels and level splitting were satisfactorily reproduced with two charge factors, namely, g<sub>1</sub> = 0.495 and g<sub>2</sub> = 0.415, assuming the luminescent site in a tetragonal point symmetry slightly distorted. In particular, it is shown that the Eu<sup>3+</sup>, itself, is satisfied by attracting an amount of charge, which neutralize/stabilize its own site electrostatically, no matter what the ligating ions are. The Eu-NN overlap (ρ = <4f|2s2p>) is assumed to be 0.1, which is physically plausible both as a limit in respect to β, the SOM correction factor to the PCEM, and describes the covalent contribution to the Ln-NN interaction, the latter is the most important contribution of the SOM to the crystal-field theory of lanthanide containing compounds. An eloquent comparison with crystal-field levels of the Eu:LiYF<sub>4</sub> and Eu(btfa)<sub>3</sub>(4,4-bipy)(EtOH) is made. Finally, this paper is, indeed, a very simple tribute to Professor Oscar L. Malta, as an acknowledgement of his deep contribution to the author's apprenticeship about crystal-field theory of systems containing lanthanides.</p></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"21 ","pages":"Article 100279"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590147823000530/pdfft?md5=aa93eb8b39b0d6fd7f59e6b0f06f6323&pid=1-s2.0-S2590147823000530-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Analytical crystal-field models applied to compounds doped with Eu3+\",\"authors\":\"Marcos A. Couto dos Santos\",\"doi\":\"10.1016/j.omx.2023.100279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The point charge electrostatic model (PCEM) and the simple overlap model (SOM), both purely analytical crystal field models, are being briefly revisited, in order to show the evolution of their application to Eu doped compounds. Calculations are made through the method of equivalent nearest neighbours (MENN), and applied to the Eu(dipivaloylmethanate)<sub>3</sub>1,10-phenanthroline [Eu(DPM)<sub>3</sub>o-phen] complex, with the aim of discussing the Eu–O and Eu–N interactions. The charge of the Eu ion is calculated using the Batista-Longo improved model (BLIM) to give g<sub>BLIM</sub> = 3,64e around the Eu-NN midpoint. The <sup>7</sup>F<sub>1</sub> crystal-field levels and level splitting were satisfactorily reproduced with two charge factors, namely, g<sub>1</sub> = 0.495 and g<sub>2</sub> = 0.415, assuming the luminescent site in a tetragonal point symmetry slightly distorted. In particular, it is shown that the Eu<sup>3+</sup>, itself, is satisfied by attracting an amount of charge, which neutralize/stabilize its own site electrostatically, no matter what the ligating ions are. The Eu-NN overlap (ρ = <4f|2s2p>) is assumed to be 0.1, which is physically plausible both as a limit in respect to β, the SOM correction factor to the PCEM, and describes the covalent contribution to the Ln-NN interaction, the latter is the most important contribution of the SOM to the crystal-field theory of lanthanide containing compounds. An eloquent comparison with crystal-field levels of the Eu:LiYF<sub>4</sub> and Eu(btfa)<sub>3</sub>(4,4-bipy)(EtOH) is made. Finally, this paper is, indeed, a very simple tribute to Professor Oscar L. Malta, as an acknowledgement of his deep contribution to the author's apprenticeship about crystal-field theory of systems containing lanthanides.</p></div>\",\"PeriodicalId\":52192,\"journal\":{\"name\":\"Optical Materials: X\",\"volume\":\"21 \",\"pages\":\"Article 100279\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590147823000530/pdfft?md5=aa93eb8b39b0d6fd7f59e6b0f06f6323&pid=1-s2.0-S2590147823000530-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590147823000530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590147823000530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
摘要
点电荷静电模型(PCEM)和简单重叠模型(SOM)都是纯粹的晶体场分析模型,我们将对这两种模型进行简要回顾,以展示它们在掺杂 Eu 的化合物中的应用演变。计算采用等效近邻法 (MENN),并应用于 Eu(二新戊酰甲酸)31,10-菲罗啉[Eu(DPM)3o-phen] 复合物,目的是讨论 Eu-O 和 Eu-N 的相互作用。通过使用巴蒂斯塔-隆戈改进模型(BLIM)计算 Eu 离子的电荷,得出 Eu-NN 中点附近的 gBLIM = 3,64e。假设发光位点处于略微扭曲的四方点对称中,使用两个电荷因子(即 g1 = 0.495 和 g2 = 0.415)可以令人满意地再现 7F1 晶场电平和电平分裂。特别要指出的是,无论配位离子是什么,Eu3+ 本身都会吸引一定量的电荷,从而使其自身位点静电中和/稳定。假定 Eu-NN 重叠(ρ = <4f|2s2p>)为 0.1,这在物理上是合理的,既是对 PCEM 的 SOM 校正因子 β 的限制,也描述了 Ln-NN 相互作用的共价贡献,后者是 SOM 对含镧系元素化合物晶体场理论的最重要贡献。本文与 Eu:LiYF4 和 Eu(btfa)3(4,4-bipy)(EtOH) 的晶体场水平进行了雄辩的比较。最后,本文是对 Oscar L. Malta 教授的简单致敬,以感谢他对作者学习含镧系元素系统的晶体场理论所做出的巨大贡献。
Analytical crystal-field models applied to compounds doped with Eu3+
The point charge electrostatic model (PCEM) and the simple overlap model (SOM), both purely analytical crystal field models, are being briefly revisited, in order to show the evolution of their application to Eu doped compounds. Calculations are made through the method of equivalent nearest neighbours (MENN), and applied to the Eu(dipivaloylmethanate)31,10-phenanthroline [Eu(DPM)3o-phen] complex, with the aim of discussing the Eu–O and Eu–N interactions. The charge of the Eu ion is calculated using the Batista-Longo improved model (BLIM) to give gBLIM = 3,64e around the Eu-NN midpoint. The 7F1 crystal-field levels and level splitting were satisfactorily reproduced with two charge factors, namely, g1 = 0.495 and g2 = 0.415, assuming the luminescent site in a tetragonal point symmetry slightly distorted. In particular, it is shown that the Eu3+, itself, is satisfied by attracting an amount of charge, which neutralize/stabilize its own site electrostatically, no matter what the ligating ions are. The Eu-NN overlap (ρ = <4f|2s2p>) is assumed to be 0.1, which is physically plausible both as a limit in respect to β, the SOM correction factor to the PCEM, and describes the covalent contribution to the Ln-NN interaction, the latter is the most important contribution of the SOM to the crystal-field theory of lanthanide containing compounds. An eloquent comparison with crystal-field levels of the Eu:LiYF4 and Eu(btfa)3(4,4-bipy)(EtOH) is made. Finally, this paper is, indeed, a very simple tribute to Professor Oscar L. Malta, as an acknowledgement of his deep contribution to the author's apprenticeship about crystal-field theory of systems containing lanthanides.