高分辨率评估青藏工程走廊逆冲融雪坍塌易发性

IF 2.3 4区 地球科学 Q4 GEOGRAPHY, PHYSICAL
GuoAn Yin , Jing Luo , FuJun Niu , MingHao Liu , ZeYong Gao , TianChun Dong , WeiHeng Ni
{"title":"高分辨率评估青藏工程走廊逆冲融雪坍塌易发性","authors":"GuoAn Yin ,&nbsp;Jing Luo ,&nbsp;FuJun Niu ,&nbsp;MingHao Liu ,&nbsp;ZeYong Gao ,&nbsp;TianChun Dong ,&nbsp;WeiHeng Ni","doi":"10.1016/j.rcar.2023.11.006","DOIUrl":null,"url":null,"abstract":"<div><div>Under the rapidly warming climate in the Arctic and high mountain areas, permafrost is thawing, leading to various hazards at a global scale. One common permafrost hazard termed retrogressive thaw slump (RTS) occurs extensively in ice-rich permafrost areas. Understanding the spatial and temporal distributive features of RTSs in a changing climate is crucial to assessing the damage to infrastructure and decision-making. To this end, we used a machine learning-based model to investigate the environmental factors that could lead to RTS occurrence and create a susceptibility map for RTS along the Qinghai-Tibet Engineering Corridor (QTEC) at a local scale. The results indicate that extreme summer climate events (<em>e.g</em>., maximum air temperature and rainfall) contributes the most to the RTS occurrence over the flat areas with fine-grained soils. The model predicts that 13% (ca. 22,948 km<sup>2</sup>) of the QTEC falls into high to very high susceptibility categories under the current climate over the permafrost areas with mean annual ground temperature at 10 m depth ranging from −3 to −1 °C. This study provides insights into the impacts of permafrost thaw on the stability of landscape, carbon stock, and infrastructure, and the results are of value for engineering planning and maintenance.</div></div>","PeriodicalId":53163,"journal":{"name":"Research in Cold and Arid Regions","volume":"15 6","pages":"Pages 288-294"},"PeriodicalIF":2.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-resolution assessment of retrogressive thaw slump susceptibility in the Qinghai-Tibet Engineering Corridor\",\"authors\":\"GuoAn Yin ,&nbsp;Jing Luo ,&nbsp;FuJun Niu ,&nbsp;MingHao Liu ,&nbsp;ZeYong Gao ,&nbsp;TianChun Dong ,&nbsp;WeiHeng Ni\",\"doi\":\"10.1016/j.rcar.2023.11.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Under the rapidly warming climate in the Arctic and high mountain areas, permafrost is thawing, leading to various hazards at a global scale. One common permafrost hazard termed retrogressive thaw slump (RTS) occurs extensively in ice-rich permafrost areas. Understanding the spatial and temporal distributive features of RTSs in a changing climate is crucial to assessing the damage to infrastructure and decision-making. To this end, we used a machine learning-based model to investigate the environmental factors that could lead to RTS occurrence and create a susceptibility map for RTS along the Qinghai-Tibet Engineering Corridor (QTEC) at a local scale. The results indicate that extreme summer climate events (<em>e.g</em>., maximum air temperature and rainfall) contributes the most to the RTS occurrence over the flat areas with fine-grained soils. The model predicts that 13% (ca. 22,948 km<sup>2</sup>) of the QTEC falls into high to very high susceptibility categories under the current climate over the permafrost areas with mean annual ground temperature at 10 m depth ranging from −3 to −1 °C. This study provides insights into the impacts of permafrost thaw on the stability of landscape, carbon stock, and infrastructure, and the results are of value for engineering planning and maintenance.</div></div>\",\"PeriodicalId\":53163,\"journal\":{\"name\":\"Research in Cold and Arid Regions\",\"volume\":\"15 6\",\"pages\":\"Pages 288-294\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Cold and Arid Regions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2097158323000800\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Cold and Arid Regions","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2097158323000800","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在北极和高山地区气候迅速变暖的情况下,永久冻土正在融化,导致全球范围内的各种灾害。一种常见的永久冻土层灾害被称为退行性融化滑塌(RTS),广泛发生在富冰的永久冻土层。了解气候变化下RTSs的时空分布特征对评估基础设施的破坏和决策至关重要。为此,我们使用基于机器学习的模型来研究可能导致RTS发生的环境因素,并在局部尺度上创建青藏工程走廊沿线RTS的易感性图。结果表明,夏季极端气候事件(如最高气温和降雨量)对细粒土壤平坦地区RTS的发生贡献最大。该模型预测,在当前气候条件下,QTEC的13%(约22,948 km2)属于高至非常高敏感性类别,在10 m深度的年平均地温范围为- 3至- 1°C。该研究为冻土融化对景观稳定性、碳储量和基础设施的影响提供了见解,并为工程规划和维护提供了价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-resolution assessment of retrogressive thaw slump susceptibility in the Qinghai-Tibet Engineering Corridor
Under the rapidly warming climate in the Arctic and high mountain areas, permafrost is thawing, leading to various hazards at a global scale. One common permafrost hazard termed retrogressive thaw slump (RTS) occurs extensively in ice-rich permafrost areas. Understanding the spatial and temporal distributive features of RTSs in a changing climate is crucial to assessing the damage to infrastructure and decision-making. To this end, we used a machine learning-based model to investigate the environmental factors that could lead to RTS occurrence and create a susceptibility map for RTS along the Qinghai-Tibet Engineering Corridor (QTEC) at a local scale. The results indicate that extreme summer climate events (e.g., maximum air temperature and rainfall) contributes the most to the RTS occurrence over the flat areas with fine-grained soils. The model predicts that 13% (ca. 22,948 km2) of the QTEC falls into high to very high susceptibility categories under the current climate over the permafrost areas with mean annual ground temperature at 10 m depth ranging from −3 to −1 °C. This study provides insights into the impacts of permafrost thaw on the stability of landscape, carbon stock, and infrastructure, and the results are of value for engineering planning and maintenance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信