{"title":"光纤渐近建模:环状毛细管和微结构光纤","authors":"G. Luzi, Vinzenz Klapper, Antonio Delgado","doi":"10.3390/fib11120104","DOIUrl":null,"url":null,"abstract":"Microstructured optical fibres (MOFs) are a new type of optical fibres that possess a wide range of optical properties and many advantages over common optical fibres. Those are provided by unique structures defined by a pattern of periodic or quasi-periodic arrangement of air holes that run through the fibre length. In recent years, MOFs have opened up new possibilities in the field of optics and photonics, enabling the development of advanced devices and novel optical systems for different applications. The key application areas of MOFs vary from telecommunications and high-power energy transmission to quantum optics and sensing. The stack-and-draw method is a standard manufacturing technique for MOFs, where a preform is first manually created and then drawn in a sophisticated furnace into a fibre with the required final dimensions and position of the air holes. During the manufacturing process, experimenters can control only a few parameters, and mathematical models and numerical simulations of the drawing process are highly requested. They not only allow to deepen the understanding of physical phenomena occurring during the drawing process, but they also accurately predict the final cross-section shape and size of the fibre. In this manuscript, we assume thermal equilibrium between the furnace and the fibre and propose a functional form of the fibre temperature distribution. We utilise it with asymptotic mass, momentum, and evolution equations for free surfaces already available in the literature to describe the process of fibre drawing. By doing so, the complex heat exchange problem between the fibre and the furnace need not be solved. The numerical results of the whole asymptotic model overall agree well with experimental data available in the literature, both for the case of annular capillaries and for the case of holey fibres.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" 25","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Modeling of Optical Fibres: Annular Capillaries and Microstructured Optical Fibres\",\"authors\":\"G. Luzi, Vinzenz Klapper, Antonio Delgado\",\"doi\":\"10.3390/fib11120104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microstructured optical fibres (MOFs) are a new type of optical fibres that possess a wide range of optical properties and many advantages over common optical fibres. Those are provided by unique structures defined by a pattern of periodic or quasi-periodic arrangement of air holes that run through the fibre length. In recent years, MOFs have opened up new possibilities in the field of optics and photonics, enabling the development of advanced devices and novel optical systems for different applications. The key application areas of MOFs vary from telecommunications and high-power energy transmission to quantum optics and sensing. The stack-and-draw method is a standard manufacturing technique for MOFs, where a preform is first manually created and then drawn in a sophisticated furnace into a fibre with the required final dimensions and position of the air holes. During the manufacturing process, experimenters can control only a few parameters, and mathematical models and numerical simulations of the drawing process are highly requested. They not only allow to deepen the understanding of physical phenomena occurring during the drawing process, but they also accurately predict the final cross-section shape and size of the fibre. In this manuscript, we assume thermal equilibrium between the furnace and the fibre and propose a functional form of the fibre temperature distribution. We utilise it with asymptotic mass, momentum, and evolution equations for free surfaces already available in the literature to describe the process of fibre drawing. By doing so, the complex heat exchange problem between the fibre and the furnace need not be solved. The numerical results of the whole asymptotic model overall agree well with experimental data available in the literature, both for the case of annular capillaries and for the case of holey fibres.\",\"PeriodicalId\":12122,\"journal\":{\"name\":\"Fibers\",\"volume\":\" 25\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fib11120104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib11120104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Asymptotic Modeling of Optical Fibres: Annular Capillaries and Microstructured Optical Fibres
Microstructured optical fibres (MOFs) are a new type of optical fibres that possess a wide range of optical properties and many advantages over common optical fibres. Those are provided by unique structures defined by a pattern of periodic or quasi-periodic arrangement of air holes that run through the fibre length. In recent years, MOFs have opened up new possibilities in the field of optics and photonics, enabling the development of advanced devices and novel optical systems for different applications. The key application areas of MOFs vary from telecommunications and high-power energy transmission to quantum optics and sensing. The stack-and-draw method is a standard manufacturing technique for MOFs, where a preform is first manually created and then drawn in a sophisticated furnace into a fibre with the required final dimensions and position of the air holes. During the manufacturing process, experimenters can control only a few parameters, and mathematical models and numerical simulations of the drawing process are highly requested. They not only allow to deepen the understanding of physical phenomena occurring during the drawing process, but they also accurately predict the final cross-section shape and size of the fibre. In this manuscript, we assume thermal equilibrium between the furnace and the fibre and propose a functional form of the fibre temperature distribution. We utilise it with asymptotic mass, momentum, and evolution equations for free surfaces already available in the literature to describe the process of fibre drawing. By doing so, the complex heat exchange problem between the fibre and the furnace need not be solved. The numerical results of the whole asymptotic model overall agree well with experimental data available in the literature, both for the case of annular capillaries and for the case of holey fibres.
FibersEngineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍:
Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins