用 CTAB 活化伊利石高岭石粘土以吸附亚甲基蓝:等温线、动力学和热力学研究

Q3 Engineering
Sara Bahemmi, Ammar Zobeidi, Salem Atia, Salah Neghmouche Nacer,, Djamel Ghernaout , Noureddine Elboughdiri
{"title":"用 CTAB 活化伊利石高岭石粘土以吸附亚甲基蓝:等温线、动力学和热力学研究","authors":"Sara Bahemmi, Ammar Zobeidi, Salem Atia, Salah Neghmouche Nacer,, Djamel Ghernaout , Noureddine Elboughdiri","doi":"10.52783/tjjpt.v44.i5.2678","DOIUrl":null,"url":null,"abstract":"In this study, a stable multilayered adduct of maghemite surfactant and clay was created by sandwich-like electrostatic self-assembly of cationic polyelectrolytes of cetyltrimethylammonium bromide (CTAB) with illite kaolinite (IKaol) clay. The adsorptive property of  IKaol/CTAB towards MB from . Aquatic system uptake was investigated. Its characteristics were analysed using X-ray powder diffraction, Fourier transform-infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and the zero point of charge. To attain higher performance of the IKaol/CTAB for MB adsorption, the primary key factors that influence the MB dye, such as (A: loading CTAB into the composite matrix of IKaol), adsorbent dose (B: 0.02–0.06 g), pH (C: 4–10), temperature (D: 30–60 °C), and time (E: 5–60 min) , were optimised using the Box–Behnken design method. The obtained results show that the highest MB removal efficiency of 86.24 % was observed at the following significant interactions: AB, BC, and AC and at optimum adsorption operation parameters (A: 0%, B: 0.06 g, C: 7, D: 45◦C, and E: 17.5 min). At these optimum conditions, the best adsorption capacity of MB dye (114.94 mg/g) was recorded at 45°C. The most effective isotherms and kinetic models were the Freundlich and pseudo-second-order kinetic models. The MB dye adsorption mechanism by IKaol can be assigned to several interactions, such as electrostatic attractions, n-π interaction, and hydrogen bonding interactions. The results of this study demonstrate the viability of IKaol as a promising precursor for the creation of an efficient adsorbent that can be used to remove cationic dye from an aqueous environment.","PeriodicalId":39883,"journal":{"name":"推进技术","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activating Illite kaolinite clay with CTAB for adsorbing Methylene blue: Isotherms, Kinetics, and thermodynamics studies\",\"authors\":\"Sara Bahemmi, Ammar Zobeidi, Salem Atia, Salah Neghmouche Nacer,, Djamel Ghernaout , Noureddine Elboughdiri\",\"doi\":\"10.52783/tjjpt.v44.i5.2678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a stable multilayered adduct of maghemite surfactant and clay was created by sandwich-like electrostatic self-assembly of cationic polyelectrolytes of cetyltrimethylammonium bromide (CTAB) with illite kaolinite (IKaol) clay. The adsorptive property of  IKaol/CTAB towards MB from . Aquatic system uptake was investigated. Its characteristics were analysed using X-ray powder diffraction, Fourier transform-infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and the zero point of charge. To attain higher performance of the IKaol/CTAB for MB adsorption, the primary key factors that influence the MB dye, such as (A: loading CTAB into the composite matrix of IKaol), adsorbent dose (B: 0.02–0.06 g), pH (C: 4–10), temperature (D: 30–60 °C), and time (E: 5–60 min) , were optimised using the Box–Behnken design method. The obtained results show that the highest MB removal efficiency of 86.24 % was observed at the following significant interactions: AB, BC, and AC and at optimum adsorption operation parameters (A: 0%, B: 0.06 g, C: 7, D: 45◦C, and E: 17.5 min). At these optimum conditions, the best adsorption capacity of MB dye (114.94 mg/g) was recorded at 45°C. The most effective isotherms and kinetic models were the Freundlich and pseudo-second-order kinetic models. The MB dye adsorption mechanism by IKaol can be assigned to several interactions, such as electrostatic attractions, n-π interaction, and hydrogen bonding interactions. The results of this study demonstrate the viability of IKaol as a promising precursor for the creation of an efficient adsorbent that can be used to remove cationic dye from an aqueous environment.\",\"PeriodicalId\":39883,\"journal\":{\"name\":\"推进技术\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"推进技术\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.52783/tjjpt.v44.i5.2678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"推进技术","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.52783/tjjpt.v44.i5.2678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究将十六烷基三甲基溴化铵(CTAB)阳离子聚电解质与伊利石高岭石(IKaol)粘土进行三明治式静电自组装,制备了一种稳定的磁铁矿表面活性剂与粘土的多层加合物。研究了IKaol/CTAB对MB的吸附性能。研究了水生系统的吸收情况。采用x射线粉末衍射、傅里叶变换红外光谱、扫描电镜、能量色散x射线光谱和电荷零点等方法对其特性进行了分析。为了获得更高的IKaol/CTAB吸附MB的性能,采用Box-Behnken设计方法对影响MB染料的主要关键因素(A:将CTAB加载到IKaol复合基质中)、吸附剂剂量(B: 0.02-0.06 g)、pH (C: 4-10)、温度(D: 30-60°C)和时间(E: 5-60 min)进行了优化。结果表明,在AB、BC和AC的显著相互作用下,在最佳吸附操作参数(A: 0%, B: 0.06 g, C: 7, D: 45◦C, E: 17.5 min)下,MB的去除率最高,为86.24%。在此条件下,45℃时MB染料的最佳吸附量为114.94 mg/g。最有效的等温线和动力学模型是Freundlich和伪二阶动力学模型。IKaol吸附MB染料的机理可以归结为静电吸引、n-π相互作用和氢键相互作用等多种相互作用。本研究的结果表明,IKaol作为一种有前途的前体,可以用于从水环境中去除阳离子染料的高效吸附剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Activating Illite kaolinite clay with CTAB for adsorbing Methylene blue: Isotherms, Kinetics, and thermodynamics studies
In this study, a stable multilayered adduct of maghemite surfactant and clay was created by sandwich-like electrostatic self-assembly of cationic polyelectrolytes of cetyltrimethylammonium bromide (CTAB) with illite kaolinite (IKaol) clay. The adsorptive property of  IKaol/CTAB towards MB from . Aquatic system uptake was investigated. Its characteristics were analysed using X-ray powder diffraction, Fourier transform-infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and the zero point of charge. To attain higher performance of the IKaol/CTAB for MB adsorption, the primary key factors that influence the MB dye, such as (A: loading CTAB into the composite matrix of IKaol), adsorbent dose (B: 0.02–0.06 g), pH (C: 4–10), temperature (D: 30–60 °C), and time (E: 5–60 min) , were optimised using the Box–Behnken design method. The obtained results show that the highest MB removal efficiency of 86.24 % was observed at the following significant interactions: AB, BC, and AC and at optimum adsorption operation parameters (A: 0%, B: 0.06 g, C: 7, D: 45◦C, and E: 17.5 min). At these optimum conditions, the best adsorption capacity of MB dye (114.94 mg/g) was recorded at 45°C. The most effective isotherms and kinetic models were the Freundlich and pseudo-second-order kinetic models. The MB dye adsorption mechanism by IKaol can be assigned to several interactions, such as electrostatic attractions, n-π interaction, and hydrogen bonding interactions. The results of this study demonstrate the viability of IKaol as a promising precursor for the creation of an efficient adsorbent that can be used to remove cationic dye from an aqueous environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
推进技术
推进技术 Engineering-Aerospace Engineering
CiteScore
1.40
自引率
0.00%
发文量
6610
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信