Aatha Mohin Shaikh, R. Patel, M. Vinchurkar, Rajul S. Patkar, A. Adami, Flavio Giacomozzi, Leandro Lorenzelli, M. Baghini
{"title":"解决非理想状态和 EIS 测量:从检查到实施","authors":"Aatha Mohin Shaikh, R. Patel, M. Vinchurkar, Rajul S. Patkar, A. Adami, Flavio Giacomozzi, Leandro Lorenzelli, M. Baghini","doi":"10.1109/MIM.2023.10328669","DOIUrl":null,"url":null,"abstract":"Gold interdigitated electrode (IDE) structure is one of the commonly-used platforms for sensing. The response of IDE-based sensors is measured in different ways, of which non-faradaic electrochemical impedance spectroscopy (nf-EIS) is specially used to extract the analytes impedance characteristics without redox labels. Many research projects across various disciplines need students from different domains, such as Electrical Engineering, Chemistry, and/or Biology, to experience electrical measurements that can easily go wrong without notice. It is crucial to evaluate the intrinsic and extrinsic constraints that need to be resolved to get reliable and high-quality nf-EIS measurements, which are also reproducible in the presence of noise and other sources of error. This article provides examples and summarizes how to systematically address the effect of the commonly existing non-idealities to enable any student to get confidence in the interpretation and reliability of nf-EIS measurements they perform. As part of our experimental analysis demonstration, various conditions and volume optimization for adequate measurements are performed.","PeriodicalId":55025,"journal":{"name":"IEEE Instrumentation & Measurement Magazine","volume":" 9","pages":"45-52"},"PeriodicalIF":1.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addressing Non-Idealities and EIS Measurement: From Inspection to Implementation\",\"authors\":\"Aatha Mohin Shaikh, R. Patel, M. Vinchurkar, Rajul S. Patkar, A. Adami, Flavio Giacomozzi, Leandro Lorenzelli, M. Baghini\",\"doi\":\"10.1109/MIM.2023.10328669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gold interdigitated electrode (IDE) structure is one of the commonly-used platforms for sensing. The response of IDE-based sensors is measured in different ways, of which non-faradaic electrochemical impedance spectroscopy (nf-EIS) is specially used to extract the analytes impedance characteristics without redox labels. Many research projects across various disciplines need students from different domains, such as Electrical Engineering, Chemistry, and/or Biology, to experience electrical measurements that can easily go wrong without notice. It is crucial to evaluate the intrinsic and extrinsic constraints that need to be resolved to get reliable and high-quality nf-EIS measurements, which are also reproducible in the presence of noise and other sources of error. This article provides examples and summarizes how to systematically address the effect of the commonly existing non-idealities to enable any student to get confidence in the interpretation and reliability of nf-EIS measurements they perform. As part of our experimental analysis demonstration, various conditions and volume optimization for adequate measurements are performed.\",\"PeriodicalId\":55025,\"journal\":{\"name\":\"IEEE Instrumentation & Measurement Magazine\",\"volume\":\" 9\",\"pages\":\"45-52\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Instrumentation & Measurement Magazine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/MIM.2023.10328669\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Instrumentation & Measurement Magazine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/MIM.2023.10328669","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Addressing Non-Idealities and EIS Measurement: From Inspection to Implementation
Gold interdigitated electrode (IDE) structure is one of the commonly-used platforms for sensing. The response of IDE-based sensors is measured in different ways, of which non-faradaic electrochemical impedance spectroscopy (nf-EIS) is specially used to extract the analytes impedance characteristics without redox labels. Many research projects across various disciplines need students from different domains, such as Electrical Engineering, Chemistry, and/or Biology, to experience electrical measurements that can easily go wrong without notice. It is crucial to evaluate the intrinsic and extrinsic constraints that need to be resolved to get reliable and high-quality nf-EIS measurements, which are also reproducible in the presence of noise and other sources of error. This article provides examples and summarizes how to systematically address the effect of the commonly existing non-idealities to enable any student to get confidence in the interpretation and reliability of nf-EIS measurements they perform. As part of our experimental analysis demonstration, various conditions and volume optimization for adequate measurements are performed.
期刊介绍:
IEEE Instrumentation & Measurement Magazine is a bimonthly publication. It publishes in February, April, June, August, October, and December of each year. The magazine covers a wide variety of topics in instrumentation, measurement, and systems that measure or instrument equipment or other systems. The magazine has the goal of providing readable introductions and overviews of technology in instrumentation and measurement to a wide engineering audience. It does this through articles, tutorials, columns, and departments. Its goal is to cross disciplines to encourage further research and development in instrumentation and measurement.