Soo Young Moon , So-Hee Son , Seung-Ho Baek , Ju Young Lee
{"title":"设计可编程控制细胞代谢的微生物细胞工厂","authors":"Soo Young Moon , So-Hee Son , Seung-Ho Baek , Ju Young Lee","doi":"10.1016/j.coisb.2023.100493","DOIUrl":null,"url":null,"abstract":"<div><p>Synthetic biology has promoted a conceptual shift in metabolic engineering for the microbial production of industrial chemicals toward a sustainable economy. Engineering principles from synthetic biology and metabolic engineering are integrated to redesign cellular metabolism to create microbial cell factories with emerging and programmable functionalities. Combining metabolic engineering with programmed spatial control is a promising approach that enables deep rewiring of microbial cell factory metabolism for the efficient production of bio-based chemicals. In this review, we discuss metabolic compartmentalization approaches for programmable control of cellular metabolism, including intracellular or intercellular partitioning-based organization of biosynthetic pathways. We also examine the designs and applications of cellular compartments and their analogs, highlighting selected examples for creating efficient and sustainable microbial cell factories.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"37 ","pages":"Article 100493"},"PeriodicalIF":3.4000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310023000501/pdfft?md5=4b2c73384af314ae39010dd8a4898183&pid=1-s2.0-S2452310023000501-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Designing microbial cell factories for programmable control of cellular metabolism\",\"authors\":\"Soo Young Moon , So-Hee Son , Seung-Ho Baek , Ju Young Lee\",\"doi\":\"10.1016/j.coisb.2023.100493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Synthetic biology has promoted a conceptual shift in metabolic engineering for the microbial production of industrial chemicals toward a sustainable economy. Engineering principles from synthetic biology and metabolic engineering are integrated to redesign cellular metabolism to create microbial cell factories with emerging and programmable functionalities. Combining metabolic engineering with programmed spatial control is a promising approach that enables deep rewiring of microbial cell factory metabolism for the efficient production of bio-based chemicals. In this review, we discuss metabolic compartmentalization approaches for programmable control of cellular metabolism, including intracellular or intercellular partitioning-based organization of biosynthetic pathways. We also examine the designs and applications of cellular compartments and their analogs, highlighting selected examples for creating efficient and sustainable microbial cell factories.</p></div>\",\"PeriodicalId\":37400,\"journal\":{\"name\":\"Current Opinion in Systems Biology\",\"volume\":\"37 \",\"pages\":\"Article 100493\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452310023000501/pdfft?md5=4b2c73384af314ae39010dd8a4898183&pid=1-s2.0-S2452310023000501-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452310023000501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310023000501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Designing microbial cell factories for programmable control of cellular metabolism
Synthetic biology has promoted a conceptual shift in metabolic engineering for the microbial production of industrial chemicals toward a sustainable economy. Engineering principles from synthetic biology and metabolic engineering are integrated to redesign cellular metabolism to create microbial cell factories with emerging and programmable functionalities. Combining metabolic engineering with programmed spatial control is a promising approach that enables deep rewiring of microbial cell factory metabolism for the efficient production of bio-based chemicals. In this review, we discuss metabolic compartmentalization approaches for programmable control of cellular metabolism, including intracellular or intercellular partitioning-based organization of biosynthetic pathways. We also examine the designs and applications of cellular compartments and their analogs, highlighting selected examples for creating efficient and sustainable microbial cell factories.
期刊介绍:
Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution