{"title":"形状共存候选者的集合度与四极转换概率重复模式之间的关系","authors":"Asgar Hosseinnezhad, Hadi Sabri","doi":"10.1016/j.nuclphysa.2023.122813","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this article, we study the possible relationship between degrees of freedom of collectivity in protons and neutrons' last orbitals and different patterns of quadrupole<span><span> transition possibilities in the shape coexistence candidates. Because of the dependence of shape coexistence on the arrangement of nucleons in the </span>nuclear structure, we classified the candidates of shape coexistence based on neutrons and protons' last orbitals using the shell-model configuration. In the orbitals corresponding to the neutron numbers in the N=40, 60, and 90 regions, there is a limitation in the degree of freedom for neutrons, and proton-induced shape coexistence occurs. Also, for the orbitals corresponding to the atomic numbers of the Z=40, 52, and 82 regions, the degree of freedom is limited for protons, and neutron-induced coexistence occurs. In this article, we study both the nuclei that belong to the neutron and proton-induced shape coexistence categories and the nuclei that are candidates for shape coexistence but do not belong to the mentioned two categories. The study of different patterns indicates that the </span></span><span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>2</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span>, <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>2</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span>, <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>2</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span>, <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span>, <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span>, and <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span> follow a similar repetition range)in most cases(for ratios related to the neutrons and protons' last orbitals classification. Also, in addition to the mentioned transition possibilities, in transitions related to the neutrons' last orbitals classification, the <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span> and <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span> have a repetition pattern. In the orbitals where neutrons and protons have fewer degrees of freedom (proton and neutron-induced shape coexistence occurs), the results show that the data related to repetition patterns are less correlated than in other orbitals. The study includes information on specific Nilsson orbitals, which are crucial in investigations related to shape coexistence. Correlating observations to these orbitals allows for a more accurate representation of the underlying microscopic picture, enhancing the quality of analysis and strengthening the connection between observations and the SC phenomenon.</p></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relation between degrees of collectivity and repetition patterns of quadrupole transition probabilities in the candidates of shape coexistence\",\"authors\":\"Asgar Hosseinnezhad, Hadi Sabri\",\"doi\":\"10.1016/j.nuclphysa.2023.122813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this article, we study the possible relationship between degrees of freedom of collectivity in protons and neutrons' last orbitals and different patterns of quadrupole<span><span> transition possibilities in the shape coexistence candidates. Because of the dependence of shape coexistence on the arrangement of nucleons in the </span>nuclear structure, we classified the candidates of shape coexistence based on neutrons and protons' last orbitals using the shell-model configuration. In the orbitals corresponding to the neutron numbers in the N=40, 60, and 90 regions, there is a limitation in the degree of freedom for neutrons, and proton-induced shape coexistence occurs. Also, for the orbitals corresponding to the atomic numbers of the Z=40, 52, and 82 regions, the degree of freedom is limited for protons, and neutron-induced coexistence occurs. In this article, we study both the nuclei that belong to the neutron and proton-induced shape coexistence categories and the nuclei that are candidates for shape coexistence but do not belong to the mentioned two categories. The study of different patterns indicates that the </span></span><span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>2</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span>, <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>2</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span>, <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>2</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span>, <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span>, <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span>, and <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span> follow a similar repetition range)in most cases(for ratios related to the neutrons and protons' last orbitals classification. Also, in addition to the mentioned transition possibilities, in transitions related to the neutrons' last orbitals classification, the <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span> and <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span> have a repetition pattern. In the orbitals where neutrons and protons have fewer degrees of freedom (proton and neutron-induced shape coexistence occurs), the results show that the data related to repetition patterns are less correlated than in other orbitals. The study includes information on specific Nilsson orbitals, which are crucial in investigations related to shape coexistence. Correlating observations to these orbitals allows for a more accurate representation of the underlying microscopic picture, enhancing the quality of analysis and strengthening the connection between observations and the SC phenomenon.</p></div>\",\"PeriodicalId\":19246,\"journal\":{\"name\":\"Nuclear Physics A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375947423002178\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375947423002178","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Relation between degrees of collectivity and repetition patterns of quadrupole transition probabilities in the candidates of shape coexistence
In this article, we study the possible relationship between degrees of freedom of collectivity in protons and neutrons' last orbitals and different patterns of quadrupole transition possibilities in the shape coexistence candidates. Because of the dependence of shape coexistence on the arrangement of nucleons in the nuclear structure, we classified the candidates of shape coexistence based on neutrons and protons' last orbitals using the shell-model configuration. In the orbitals corresponding to the neutron numbers in the N=40, 60, and 90 regions, there is a limitation in the degree of freedom for neutrons, and proton-induced shape coexistence occurs. Also, for the orbitals corresponding to the atomic numbers of the Z=40, 52, and 82 regions, the degree of freedom is limited for protons, and neutron-induced coexistence occurs. In this article, we study both the nuclei that belong to the neutron and proton-induced shape coexistence categories and the nuclei that are candidates for shape coexistence but do not belong to the mentioned two categories. The study of different patterns indicates that the , , , , , and follow a similar repetition range)in most cases(for ratios related to the neutrons and protons' last orbitals classification. Also, in addition to the mentioned transition possibilities, in transitions related to the neutrons' last orbitals classification, the and have a repetition pattern. In the orbitals where neutrons and protons have fewer degrees of freedom (proton and neutron-induced shape coexistence occurs), the results show that the data related to repetition patterns are less correlated than in other orbitals. The study includes information on specific Nilsson orbitals, which are crucial in investigations related to shape coexistence. Correlating observations to these orbitals allows for a more accurate representation of the underlying microscopic picture, enhancing the quality of analysis and strengthening the connection between observations and the SC phenomenon.
期刊介绍:
Nuclear Physics A focuses on the domain of nuclear and hadronic physics and includes the following subsections: Nuclear Structure and Dynamics; Intermediate and High Energy Heavy Ion Physics; Hadronic Physics; Electromagnetic and Weak Interactions; Nuclear Astrophysics. The emphasis is on original research papers. A number of carefully selected and reviewed conference proceedings are published as an integral part of the journal.