形状共存候选者的集合度与四极转换概率重复模式之间的关系

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, NUCLEAR
Asgar Hosseinnezhad, Hadi Sabri
{"title":"形状共存候选者的集合度与四极转换概率重复模式之间的关系","authors":"Asgar Hosseinnezhad,&nbsp;Hadi Sabri","doi":"10.1016/j.nuclphysa.2023.122813","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this article, we study the possible relationship between degrees of freedom of collectivity in protons and neutrons' last orbitals and different patterns of quadrupole<span><span> transition possibilities in the shape coexistence candidates. Because of the dependence of shape coexistence on the arrangement of nucleons in the </span>nuclear structure, we classified the candidates of shape coexistence based on neutrons and protons' last orbitals using the shell-model configuration. In the orbitals corresponding to the neutron numbers in the N=40, 60, and 90 regions, there is a limitation in the degree of freedom for neutrons, and proton-induced shape coexistence occurs. Also, for the orbitals corresponding to the atomic numbers of the Z=40, 52, and 82 regions, the degree of freedom is limited for protons, and neutron-induced coexistence occurs. In this article, we study both the nuclei that belong to the neutron and proton-induced shape coexistence categories and the nuclei that are candidates for shape coexistence but do not belong to the mentioned two categories. The study of different patterns indicates that the </span></span><span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>2</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span>, <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>2</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span>, <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>2</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span>, <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span>, <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span>, and <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span> follow a similar repetition range)in most cases(for ratios related to the neutrons and protons' last orbitals classification. Also, in addition to the mentioned transition possibilities, in transitions related to the neutrons' last orbitals classification, the <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span> and <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span> have a repetition pattern. In the orbitals where neutrons and protons have fewer degrees of freedom (proton and neutron-induced shape coexistence occurs), the results show that the data related to repetition patterns are less correlated than in other orbitals. The study includes information on specific Nilsson orbitals, which are crucial in investigations related to shape coexistence. Correlating observations to these orbitals allows for a more accurate representation of the underlying microscopic picture, enhancing the quality of analysis and strengthening the connection between observations and the SC phenomenon.</p></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relation between degrees of collectivity and repetition patterns of quadrupole transition probabilities in the candidates of shape coexistence\",\"authors\":\"Asgar Hosseinnezhad,&nbsp;Hadi Sabri\",\"doi\":\"10.1016/j.nuclphysa.2023.122813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this article, we study the possible relationship between degrees of freedom of collectivity in protons and neutrons' last orbitals and different patterns of quadrupole<span><span> transition possibilities in the shape coexistence candidates. Because of the dependence of shape coexistence on the arrangement of nucleons in the </span>nuclear structure, we classified the candidates of shape coexistence based on neutrons and protons' last orbitals using the shell-model configuration. In the orbitals corresponding to the neutron numbers in the N=40, 60, and 90 regions, there is a limitation in the degree of freedom for neutrons, and proton-induced shape coexistence occurs. Also, for the orbitals corresponding to the atomic numbers of the Z=40, 52, and 82 regions, the degree of freedom is limited for protons, and neutron-induced coexistence occurs. In this article, we study both the nuclei that belong to the neutron and proton-induced shape coexistence categories and the nuclei that are candidates for shape coexistence but do not belong to the mentioned two categories. The study of different patterns indicates that the </span></span><span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>2</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span>, <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>2</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span>, <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>2</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span>, <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span>, <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span>, and <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>0</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span> follow a similar repetition range)in most cases(for ratios related to the neutrons and protons' last orbitals classification. Also, in addition to the mentioned transition possibilities, in transitions related to the neutrons' last orbitals classification, the <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span> and <span><math><mfrac><mrow><mrow><mo>|</mo></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>2</mn><mn>3</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>2</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mo>−</mo><mi>B</mi><mrow><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow><mspace></mspace></mrow><mrow><mo>|</mo></mrow></mrow><mrow><mi>B</mi><mo>(</mo><mrow><mi>E</mi><mn>2</mn><mo>;</mo><msubsup><mn>6</mn><mn>1</mn><mo>+</mo></msubsup><mo>→</mo><msubsup><mn>4</mn><mn>1</mn><mo>+</mo></msubsup></mrow><mo>)</mo></mrow></mfrac></math></span> have a repetition pattern. In the orbitals where neutrons and protons have fewer degrees of freedom (proton and neutron-induced shape coexistence occurs), the results show that the data related to repetition patterns are less correlated than in other orbitals. The study includes information on specific Nilsson orbitals, which are crucial in investigations related to shape coexistence. Correlating observations to these orbitals allows for a more accurate representation of the underlying microscopic picture, enhancing the quality of analysis and strengthening the connection between observations and the SC phenomenon.</p></div>\",\"PeriodicalId\":19246,\"journal\":{\"name\":\"Nuclear Physics A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375947423002178\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375947423002178","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了质子和中子最后轨道的集合自由度与形状共存候选体四极转换可能性的不同模式之间的可能关系。由于形状共存取决于核结构中核子的排列,我们根据中子和质子的最后轨道,利用壳模型构型对形状共存候选者进行了分类。在中子数对应于 N=40、60 和 90 区域的轨道中,中子的自由度受到限制,质子诱导的形状共存会发生。此外,对于与 Z=40、52 和 82 区域的原子序数相对应的轨道,质子的自由度受到限制,会出现中子诱导的共存现象。在本文中,我们既研究了属于中子和质子诱导形状共存类别的原子核,也研究了候选形状共存但不属于上述两类的原子核。对不同模式的研究表明,|B(E2;22+→01+)-B(E2;21+→01+)|B(E2;21+→01+)、|B(E2;22+→01+)-B(E2;41+→21+)|B(E2;41+→21+), |B(E2;22+→01+)−B(E2;61+→41+)|B(E2;61+→41+), |B(E2;23+→01+)−B(E2;21+→01+)|B(E2;21+→01+)、|B(E2;23+→01+)-B(E2;41+→21+)|B(E2;41+→21+)和|B(E2;23+→01+)-B(E2;61+→41+)|B(E2;61+→41+)在大多数情况下(与中子和质子的最后轨道分类有关的比率)遵循相似的重复范围。此外,除了上述过渡可能性之外,在与中子最后轨道分类有关的过渡中,|B(E2;23+→21+)-B(E2;41+→21+)|B(E2;41+→21+)和|B(E2;23+→21+)-B(E2;61+→41+)|B(E2;61+→41+)也有重复模式。在中子和质子拥有较少自由度的轨道(质子和中子引起的形状共存)中,结果表明与重复模式相关的数据比其他轨道的相关性要小。该研究包括特定尼尔森轨道的信息,这些轨道在与形状共存相关的研究中至关重要。将观测结果与这些轨道相关联,可以更准确地反映基本的微观情况,提高分析质量,并加强观测结果与 SC 现象之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relation between degrees of collectivity and repetition patterns of quadrupole transition probabilities in the candidates of shape coexistence

In this article, we study the possible relationship between degrees of freedom of collectivity in protons and neutrons' last orbitals and different patterns of quadrupole transition possibilities in the shape coexistence candidates. Because of the dependence of shape coexistence on the arrangement of nucleons in the nuclear structure, we classified the candidates of shape coexistence based on neutrons and protons' last orbitals using the shell-model configuration. In the orbitals corresponding to the neutron numbers in the N=40, 60, and 90 regions, there is a limitation in the degree of freedom for neutrons, and proton-induced shape coexistence occurs. Also, for the orbitals corresponding to the atomic numbers of the Z=40, 52, and 82 regions, the degree of freedom is limited for protons, and neutron-induced coexistence occurs. In this article, we study both the nuclei that belong to the neutron and proton-induced shape coexistence categories and the nuclei that are candidates for shape coexistence but do not belong to the mentioned two categories. The study of different patterns indicates that the |B(E2;22+01+)B(E2;21+01+)|B(E2;21+01+), |B(E2;22+01+)B(E2;41+21+)|B(E2;41+21+), |B(E2;22+01+)B(E2;61+41+)|B(E2;61+41+), |B(E2;23+01+)B(E2;21+01+)|B(E2;21+01+), |B(E2;23+01+)B(E2;41+21+)|B(E2;41+21+), and |B(E2;23+01+)B(E2;61+41+)|B(E2;61+41+) follow a similar repetition range)in most cases(for ratios related to the neutrons and protons' last orbitals classification. Also, in addition to the mentioned transition possibilities, in transitions related to the neutrons' last orbitals classification, the |B(E2;23+21+)B(E2;41+21+)|B(E2;41+21+) and |B(E2;23+21+)B(E2;61+41+)|B(E2;61+41+) have a repetition pattern. In the orbitals where neutrons and protons have fewer degrees of freedom (proton and neutron-induced shape coexistence occurs), the results show that the data related to repetition patterns are less correlated than in other orbitals. The study includes information on specific Nilsson orbitals, which are crucial in investigations related to shape coexistence. Correlating observations to these orbitals allows for a more accurate representation of the underlying microscopic picture, enhancing the quality of analysis and strengthening the connection between observations and the SC phenomenon.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Physics A
Nuclear Physics A 物理-物理:核物理
CiteScore
3.60
自引率
7.10%
发文量
113
审稿时长
61 days
期刊介绍: Nuclear Physics A focuses on the domain of nuclear and hadronic physics and includes the following subsections: Nuclear Structure and Dynamics; Intermediate and High Energy Heavy Ion Physics; Hadronic Physics; Electromagnetic and Weak Interactions; Nuclear Astrophysics. The emphasis is on original research papers. A number of carefully selected and reviewed conference proceedings are published as an integral part of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信