Nami Tajima, Nebojša Bogdanović, Guadalupe Segura-Covarrubias, Lisa Zhang
{"title":"GluK2 kainate 受体在apo和部分激动剂结合状态下的结构动力学。","authors":"Nami Tajima, Nebojša Bogdanović, Guadalupe Segura-Covarrubias, Lisa Zhang","doi":"10.21203/rs.3.rs-3592604/v1","DOIUrl":null,"url":null,"abstract":"Abstract Kainate receptors (KARs) belong to the family of ionotropic glutamate receptors (iGluRs) and are tetrameric ligand-gated ion channels that regulate neurotransmitter release and excitatory synaptic transmission in the central nervous system. While KARs share overall architectures with other iGluR subfamilies, their dynamics are significantly different from those of other iGluRs. KARs are activated by both full and partial agonists. While there is less efficacy with partial agonists than with full agonists, the detailed mechanism has remained elusive. Here, we used cryo-electron microscopy to determine the structures of homomeric rat GluK2 KARs in the absence of ligands (apo) and in complex with a partial agonist. Intriguingly, the apo state KARs were captured in desensitized conformation. This structure confirms the KAR desensitization prior to activation. Structures of KARs complexed to the partial agonist domoate populate in domoate bound desensitized and non-active/non-desensitized states. These previously unseen intermediate structures highlight the molecular mechanism of partial agonism in KARs. Additionally, we show how N -glycans stabilized the ligand-binding domain dimer via cation/anion binding and modulated receptor gating properties using electrophysiology. Our findings provide vital structural and functional insights into the unique KAR gating mechanisms.","PeriodicalId":21039,"journal":{"name":"Research Square","volume":"111 29","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural dynamics of GluK2 kainate receptors in apo and partial agonist bound states.\",\"authors\":\"Nami Tajima, Nebojša Bogdanović, Guadalupe Segura-Covarrubias, Lisa Zhang\",\"doi\":\"10.21203/rs.3.rs-3592604/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Kainate receptors (KARs) belong to the family of ionotropic glutamate receptors (iGluRs) and are tetrameric ligand-gated ion channels that regulate neurotransmitter release and excitatory synaptic transmission in the central nervous system. While KARs share overall architectures with other iGluR subfamilies, their dynamics are significantly different from those of other iGluRs. KARs are activated by both full and partial agonists. While there is less efficacy with partial agonists than with full agonists, the detailed mechanism has remained elusive. Here, we used cryo-electron microscopy to determine the structures of homomeric rat GluK2 KARs in the absence of ligands (apo) and in complex with a partial agonist. Intriguingly, the apo state KARs were captured in desensitized conformation. This structure confirms the KAR desensitization prior to activation. Structures of KARs complexed to the partial agonist domoate populate in domoate bound desensitized and non-active/non-desensitized states. These previously unseen intermediate structures highlight the molecular mechanism of partial agonism in KARs. Additionally, we show how N -glycans stabilized the ligand-binding domain dimer via cation/anion binding and modulated receptor gating properties using electrophysiology. Our findings provide vital structural and functional insights into the unique KAR gating mechanisms.\",\"PeriodicalId\":21039,\"journal\":{\"name\":\"Research Square\",\"volume\":\"111 29\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Square\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-3592604/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-3592604/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structural dynamics of GluK2 kainate receptors in apo and partial agonist bound states.
Abstract Kainate receptors (KARs) belong to the family of ionotropic glutamate receptors (iGluRs) and are tetrameric ligand-gated ion channels that regulate neurotransmitter release and excitatory synaptic transmission in the central nervous system. While KARs share overall architectures with other iGluR subfamilies, their dynamics are significantly different from those of other iGluRs. KARs are activated by both full and partial agonists. While there is less efficacy with partial agonists than with full agonists, the detailed mechanism has remained elusive. Here, we used cryo-electron microscopy to determine the structures of homomeric rat GluK2 KARs in the absence of ligands (apo) and in complex with a partial agonist. Intriguingly, the apo state KARs were captured in desensitized conformation. This structure confirms the KAR desensitization prior to activation. Structures of KARs complexed to the partial agonist domoate populate in domoate bound desensitized and non-active/non-desensitized states. These previously unseen intermediate structures highlight the molecular mechanism of partial agonism in KARs. Additionally, we show how N -glycans stabilized the ligand-binding domain dimer via cation/anion binding and modulated receptor gating properties using electrophysiology. Our findings provide vital structural and functional insights into the unique KAR gating mechanisms.