嵌段共聚物稳定的金属有机框架杂化物负载钯纳米粒子,可通过近红外光热疗法缓解肿瘤症状

IF 4 Q2 ENGINEERING, BIOMEDICAL
Shang-Wei Li, Ming-Feng Hsieh, Taehun Hong, Pengwen Chen, Kensuke Osada, Xueying Liu, Ichio Aoki, Jiashing Yu, Kevin C.-W. Wu, Horacio Cabral
{"title":"嵌段共聚物稳定的金属有机框架杂化物负载钯纳米粒子,可通过近红外光热疗法缓解肿瘤症状","authors":"Shang-Wei Li,&nbsp;Ming-Feng Hsieh,&nbsp;Taehun Hong,&nbsp;Pengwen Chen,&nbsp;Kensuke Osada,&nbsp;Xueying Liu,&nbsp;Ichio Aoki,&nbsp;Jiashing Yu,&nbsp;Kevin C.-W. Wu,&nbsp;Horacio Cabral","doi":"10.1002/anbr.202300107","DOIUrl":null,"url":null,"abstract":"<p>Metal–organic frameworks (MOFs), such as the magnetic resonance imaging-fit MIL-100 based on Fe, are gaining significant attention as versatile theranostics with high-loading capability. Moreover, as MOFs can be engineered to target tumors, there is much interest in applying them for precise pin-point treatment of cancer. Herein, Pd nanoparticles within MIL-100(Fe) are generated to create MOFs with remarkable photothermal conversion properties for cancer therapy. The Pd-loaded MIL-100(Fe) (Pd@MIL-100(Fe)) are stabilized with biocompatible block copolymers to generate MOFs with PEGylated surfaces. This is achieved by directly mixing poly(ethylene glycol)-poly(L-aspartic acid) (PEG-p(Asp)) or dopamine-modified PEG-p(Asp) (PEG-p(Asp-Dopa)) block copolymers with the MOFs in aqueous conditions. The resulting block copolymer-stabilized MOF hybrids are stable in physiological conditions. Particularly, the Pd@MIL-100(Fe)/PEG-p(Asp-Dopa) hybrids show enhanced blood circulation and increased accumulation in B16F10 melanoma. Furthermore, when irradiated with 808 nm light, the Pd@MIL-100(Fe)/PEG-p(Asp-Dopa) hybrids rapidly increase the temperature to 50 °C, enabling tumor remission. The surface-stabilized Pd@MIL-100(Fe)/polymer hybrids open viable opportunities for innovating MOF/polymer hybrid-based approaches for drug delivery.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300107","citationCount":"0","resultStr":"{\"title\":\"Block Copolymer-Stabilized Metal–Organic Framework Hybrids Loading Pd Nanoparticles Enable Tumor Remission Through Near-Infrared Photothermal Therapy\",\"authors\":\"Shang-Wei Li,&nbsp;Ming-Feng Hsieh,&nbsp;Taehun Hong,&nbsp;Pengwen Chen,&nbsp;Kensuke Osada,&nbsp;Xueying Liu,&nbsp;Ichio Aoki,&nbsp;Jiashing Yu,&nbsp;Kevin C.-W. Wu,&nbsp;Horacio Cabral\",\"doi\":\"10.1002/anbr.202300107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metal–organic frameworks (MOFs), such as the magnetic resonance imaging-fit MIL-100 based on Fe, are gaining significant attention as versatile theranostics with high-loading capability. Moreover, as MOFs can be engineered to target tumors, there is much interest in applying them for precise pin-point treatment of cancer. Herein, Pd nanoparticles within MIL-100(Fe) are generated to create MOFs with remarkable photothermal conversion properties for cancer therapy. The Pd-loaded MIL-100(Fe) (Pd@MIL-100(Fe)) are stabilized with biocompatible block copolymers to generate MOFs with PEGylated surfaces. This is achieved by directly mixing poly(ethylene glycol)-poly(L-aspartic acid) (PEG-p(Asp)) or dopamine-modified PEG-p(Asp) (PEG-p(Asp-Dopa)) block copolymers with the MOFs in aqueous conditions. The resulting block copolymer-stabilized MOF hybrids are stable in physiological conditions. Particularly, the Pd@MIL-100(Fe)/PEG-p(Asp-Dopa) hybrids show enhanced blood circulation and increased accumulation in B16F10 melanoma. Furthermore, when irradiated with 808 nm light, the Pd@MIL-100(Fe)/PEG-p(Asp-Dopa) hybrids rapidly increase the temperature to 50 °C, enabling tumor remission. The surface-stabilized Pd@MIL-100(Fe)/polymer hybrids open viable opportunities for innovating MOF/polymer hybrid-based approaches for drug delivery.</p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300107\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

金属-有机框架(mof),如基于铁的磁共振成像MIL - 100,作为具有高负载能力的多功能治疗手段,正受到广泛关注。此外,由于mof可以被设计成靶向肿瘤,因此将其应用于精确的癌症治疗非常有兴趣。在此,在MIL - 100(Fe)中生成Pd纳米颗粒,以创建具有显着光热转换特性的mof,用于癌症治疗。负载Pd的MIL - 100(Fe) (Pd@MIL - 100(Fe))用生物相容性嵌段共聚物稳定,生成具有聚乙二醇化表面的mof。这是通过在水条件下将聚乙二醇-聚L -天冬氨酸(PEG - p(Asp))或多巴胺修饰的PEG - p(Asp) (PEG - p(Asp - Dopa))嵌段共聚物与mof直接混合来实现的。得到的嵌段共聚物稳定的MOF杂化物在生理条件下是稳定的。尤其值得一提的是,Pd@MIL‐100(Fe)/PEG‐p(Asp‐Dopa)杂种在B16F10黑色素瘤中表现出血液循环增强和积累增加。此外,当808 nm光照射时,Pd@MIL‐100(Fe)/PEG‐p(Asp‐Dopa)杂交体迅速将温度升高到50°C,从而使肿瘤缓解。表面稳定的Pd@MIL‐100(Fe)/聚合物杂合物为创新基于MOF/聚合物杂合物的药物递送方法提供了可行的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Block Copolymer-Stabilized Metal–Organic Framework Hybrids Loading Pd Nanoparticles Enable Tumor Remission Through Near-Infrared Photothermal Therapy

Block Copolymer-Stabilized Metal–Organic Framework Hybrids Loading Pd Nanoparticles Enable Tumor Remission Through Near-Infrared Photothermal Therapy

Metal–organic frameworks (MOFs), such as the magnetic resonance imaging-fit MIL-100 based on Fe, are gaining significant attention as versatile theranostics with high-loading capability. Moreover, as MOFs can be engineered to target tumors, there is much interest in applying them for precise pin-point treatment of cancer. Herein, Pd nanoparticles within MIL-100(Fe) are generated to create MOFs with remarkable photothermal conversion properties for cancer therapy. The Pd-loaded MIL-100(Fe) (Pd@MIL-100(Fe)) are stabilized with biocompatible block copolymers to generate MOFs with PEGylated surfaces. This is achieved by directly mixing poly(ethylene glycol)-poly(L-aspartic acid) (PEG-p(Asp)) or dopamine-modified PEG-p(Asp) (PEG-p(Asp-Dopa)) block copolymers with the MOFs in aqueous conditions. The resulting block copolymer-stabilized MOF hybrids are stable in physiological conditions. Particularly, the Pd@MIL-100(Fe)/PEG-p(Asp-Dopa) hybrids show enhanced blood circulation and increased accumulation in B16F10 melanoma. Furthermore, when irradiated with 808 nm light, the Pd@MIL-100(Fe)/PEG-p(Asp-Dopa) hybrids rapidly increase the temperature to 50 °C, enabling tumor remission. The surface-stabilized Pd@MIL-100(Fe)/polymer hybrids open viable opportunities for innovating MOF/polymer hybrid-based approaches for drug delivery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Nanobiomed Research
Advanced Nanobiomed Research nanomedicine, bioengineering and biomaterials-
CiteScore
5.00
自引率
5.90%
发文量
87
审稿时长
21 weeks
期刊介绍: Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science. The scope of Advanced NanoBiomed Research will cover the following key subject areas: ▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging. ▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications. ▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture. ▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs. ▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization. ▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems. with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信