{"title":"将基本金属离子作为纳米药物用于癌症治疗的简要回顾","authors":"Lin Weng, Xin Chen","doi":"10.1002/anbr.202300069","DOIUrl":null,"url":null,"abstract":"<p>In this review, the latest progress in essential metal-ion-based nanomedicines for tumor therapy is summarized, existing challenges are addressed, and possible directions are proposed for such therapeutic strategies. Essential metal ions are critical for the metabolic activity of organisms. Their abnormal spatial and temporal distribution in biological systems, particularly inside the cell, disrupts biochemical processes and leads to irreversible physicochemical damage to cells. Thus, they can function as the foundation of targeted cancer therapies for tumor inhibition and eradication. Over the last decade, numerous essential metal-ion-based cancer therapies have been developed to fight a wide spectrum of cancers with improved efficiency and minor drug resistance. Triggering biocatalysis, affecting protein metabolism, interfering with signal transduction, damaging DNA, and initiating biomineralization are the main mechanisms underlying these therapies. In this study, it is aimed to provide readers with general implications for future research for an increased interest in future clinical applications of these advanced cancer therapies.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 2","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300069","citationCount":"0","resultStr":"{\"title\":\"A Brief Review on Manipulation of Essential Metal Ions as Nanomedicine for Cancer Therapy\",\"authors\":\"Lin Weng, Xin Chen\",\"doi\":\"10.1002/anbr.202300069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this review, the latest progress in essential metal-ion-based nanomedicines for tumor therapy is summarized, existing challenges are addressed, and possible directions are proposed for such therapeutic strategies. Essential metal ions are critical for the metabolic activity of organisms. Their abnormal spatial and temporal distribution in biological systems, particularly inside the cell, disrupts biochemical processes and leads to irreversible physicochemical damage to cells. Thus, they can function as the foundation of targeted cancer therapies for tumor inhibition and eradication. Over the last decade, numerous essential metal-ion-based cancer therapies have been developed to fight a wide spectrum of cancers with improved efficiency and minor drug resistance. Triggering biocatalysis, affecting protein metabolism, interfering with signal transduction, damaging DNA, and initiating biomineralization are the main mechanisms underlying these therapies. In this study, it is aimed to provide readers with general implications for future research for an increased interest in future clinical applications of these advanced cancer therapies.</p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"4 2\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300069\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Brief Review on Manipulation of Essential Metal Ions as Nanomedicine for Cancer Therapy
In this review, the latest progress in essential metal-ion-based nanomedicines for tumor therapy is summarized, existing challenges are addressed, and possible directions are proposed for such therapeutic strategies. Essential metal ions are critical for the metabolic activity of organisms. Their abnormal spatial and temporal distribution in biological systems, particularly inside the cell, disrupts biochemical processes and leads to irreversible physicochemical damage to cells. Thus, they can function as the foundation of targeted cancer therapies for tumor inhibition and eradication. Over the last decade, numerous essential metal-ion-based cancer therapies have been developed to fight a wide spectrum of cancers with improved efficiency and minor drug resistance. Triggering biocatalysis, affecting protein metabolism, interfering with signal transduction, damaging DNA, and initiating biomineralization are the main mechanisms underlying these therapies. In this study, it is aimed to provide readers with general implications for future research for an increased interest in future clinical applications of these advanced cancer therapies.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.