利用海岸线数据进行第 2 类直觉插值立体模糊贝塞尔曲线建模

IF 0.8 Q3 MULTIDISCIPLINARY SCIENCES
Nur Batrisyia Ahmad Azmi, R. Zakaria, I. Ismail
{"title":"利用海岸线数据进行第 2 类直觉插值立体模糊贝塞尔曲线建模","authors":"Nur Batrisyia Ahmad Azmi, R. Zakaria, I. Ismail","doi":"10.11113/mjfas.v19n6.3076","DOIUrl":null,"url":null,"abstract":"The notion of fuzzy sets is fast becoming a key instrument in defining the uncertainty data and has increasingly been recognised by practitioners and researchers across different disciplines in recent decades. The uncertainty data cannot be modeled directly and this causes hindrance in obtaining accurate information for analysis or predictions. Hence, this paper contributes to another approach in which an application of type-2 intuitionistic fuzzy set (T-2IFS) in geometric modeling onto complex uncertainty data where the data are defined using the type-2 fuzzy concept. T-2IFS is the generalized forms of fuzzy sets, intuitionistic fuzzy sets, interval-valued fuzzy sets, and interval-valued intuitionistic fuzzy sets. Based on the concept of T2IFS, type-2 intuitionistic fuzzy point (T-2IFP) is defined in order to generate a type-2 intuitionistic fuzzy control point (T-2IFCP). Following, the T-2IFCP will be blended with the Bernstein blending function through the interpolation method, resulting to a type-2 intuitionistic interpolation cubic fuzzy Bézier curve. Shoreline data is used as the data and further verifies that the model can be conceivably accepted. In conclusion, the proposed methods are reliable and can be expanded to many other areas.","PeriodicalId":18149,"journal":{"name":"Malaysian Journal of Fundamental and Applied Sciences","volume":"68 23","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Type-2 Intuitionistic Interpolation Cubic Fuzzy Bézier Curve Modeling using Shoreline Data\",\"authors\":\"Nur Batrisyia Ahmad Azmi, R. Zakaria, I. Ismail\",\"doi\":\"10.11113/mjfas.v19n6.3076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The notion of fuzzy sets is fast becoming a key instrument in defining the uncertainty data and has increasingly been recognised by practitioners and researchers across different disciplines in recent decades. The uncertainty data cannot be modeled directly and this causes hindrance in obtaining accurate information for analysis or predictions. Hence, this paper contributes to another approach in which an application of type-2 intuitionistic fuzzy set (T-2IFS) in geometric modeling onto complex uncertainty data where the data are defined using the type-2 fuzzy concept. T-2IFS is the generalized forms of fuzzy sets, intuitionistic fuzzy sets, interval-valued fuzzy sets, and interval-valued intuitionistic fuzzy sets. Based on the concept of T2IFS, type-2 intuitionistic fuzzy point (T-2IFP) is defined in order to generate a type-2 intuitionistic fuzzy control point (T-2IFCP). Following, the T-2IFCP will be blended with the Bernstein blending function through the interpolation method, resulting to a type-2 intuitionistic interpolation cubic fuzzy Bézier curve. Shoreline data is used as the data and further verifies that the model can be conceivably accepted. In conclusion, the proposed methods are reliable and can be expanded to many other areas.\",\"PeriodicalId\":18149,\"journal\":{\"name\":\"Malaysian Journal of Fundamental and Applied Sciences\",\"volume\":\"68 23\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian Journal of Fundamental and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/mjfas.v19n6.3076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Fundamental and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/mjfas.v19n6.3076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

近几十年来,模糊集的概念正迅速成为定义不确定性数据的关键工具,并越来越多地被不同学科的从业者和研究人员所认可。不确定性数据不能直接建模,这对获得准确信息进行分析或预测造成了障碍。因此,本文提出了另一种方法,将2型直觉模糊集(T-2IFS)应用于复杂不确定性数据的几何建模,其中数据是使用2型模糊概念定义的。T-2IFS是模糊集、直觉模糊集、区间值模糊集、区间值直觉模糊集的广义形式。基于T2IFS的概念,定义2型直觉模糊点(T-2IFP),生成2型直觉模糊控制点(T-2IFCP)。接下来,将T-2IFCP通过插值方法与Bernstein混合函数进行混合,得到type-2直观插值三次模糊bsamizier曲线。采用岸线数据作为数据,进一步验证了模型的可接受性。总之,所提出的方法是可靠的,可以推广到许多其他领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Type-2 Intuitionistic Interpolation Cubic Fuzzy Bézier Curve Modeling using Shoreline Data
The notion of fuzzy sets is fast becoming a key instrument in defining the uncertainty data and has increasingly been recognised by practitioners and researchers across different disciplines in recent decades. The uncertainty data cannot be modeled directly and this causes hindrance in obtaining accurate information for analysis or predictions. Hence, this paper contributes to another approach in which an application of type-2 intuitionistic fuzzy set (T-2IFS) in geometric modeling onto complex uncertainty data where the data are defined using the type-2 fuzzy concept. T-2IFS is the generalized forms of fuzzy sets, intuitionistic fuzzy sets, interval-valued fuzzy sets, and interval-valued intuitionistic fuzzy sets. Based on the concept of T2IFS, type-2 intuitionistic fuzzy point (T-2IFP) is defined in order to generate a type-2 intuitionistic fuzzy control point (T-2IFCP). Following, the T-2IFCP will be blended with the Bernstein blending function through the interpolation method, resulting to a type-2 intuitionistic interpolation cubic fuzzy Bézier curve. Shoreline data is used as the data and further verifies that the model can be conceivably accepted. In conclusion, the proposed methods are reliable and can be expanded to many other areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
45
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信