利用粉末 XRD 系统通过 XANES 探测铜和氧化铜薄膜的电子特性

IF 0.8 Q3 MULTIDISCIPLINARY SCIENCES
Siti Sarah Saniman, M. F. Omar
{"title":"利用粉末 XRD 系统通过 XANES 探测铜和氧化铜薄膜的电子特性","authors":"Siti Sarah Saniman, M. F. Omar","doi":"10.11113/mjfas.v19n6.3143","DOIUrl":null,"url":null,"abstract":"This research introduces an alternative approach on materials characterization by developing an in-house X-ray Absorption Spectroscopy (XAS) system utilizing powder X-ray Diffraction (XRD) machine. The performance of the in-house XAS system was investigated by analysing the position of Cu K-edge and the absorption spectrum shape within the X-ray Absorption Near Edge Structure (XANES) region. Copper (Cu) based samples were used to test the performance of the system where Cu and Copper Oxide (CuO) thin film deposited on polyimide tape and silicon wafer (100) prepared through the deposition process carried out using RF Magnetron Sputtering machine. Phase confirmation analysis were conducted by XRD and the deposited films’ thickness were measured by Scanning Electron Microscope (SEM). The laboratory-based XAS measurement was carried out using Rigaku SmartLab X-ray Diffractometer configured for Bragg-Brentano (BB) measurement mode. Molybdenum (Mo) target was used to produce white X-rays by energizing it near 20 keV ±0.01 keV. XRD measurements on XRD and SEM analysis proves successful deposition of pure Cu and CuO thin films and the film thickness measured is 1.432 μm and 0.680 μm respectively. The conclusive findings of the laboratory-based XAS measurements indicate successful acquisition of XAS data with similar spectrum shape of experimental Cu and CuO XANES in comparison with theoretical data. Next, experimental XANES shows clear observation of Cu K-edge peaks for Cu thin film at 8.9737 keV, while Cu K-edge for CuO thin films is not observable. Lastly, there is also presence of significant XANES broadening and which then effect consequent peak shiftings.","PeriodicalId":18149,"journal":{"name":"Malaysian Journal of Fundamental and Applied Sciences","volume":"32 18","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing the Electronic Properties of Cu and CuO Thin Films via XANES utilizing Powder XRD System\",\"authors\":\"Siti Sarah Saniman, M. F. Omar\",\"doi\":\"10.11113/mjfas.v19n6.3143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research introduces an alternative approach on materials characterization by developing an in-house X-ray Absorption Spectroscopy (XAS) system utilizing powder X-ray Diffraction (XRD) machine. The performance of the in-house XAS system was investigated by analysing the position of Cu K-edge and the absorption spectrum shape within the X-ray Absorption Near Edge Structure (XANES) region. Copper (Cu) based samples were used to test the performance of the system where Cu and Copper Oxide (CuO) thin film deposited on polyimide tape and silicon wafer (100) prepared through the deposition process carried out using RF Magnetron Sputtering machine. Phase confirmation analysis were conducted by XRD and the deposited films’ thickness were measured by Scanning Electron Microscope (SEM). The laboratory-based XAS measurement was carried out using Rigaku SmartLab X-ray Diffractometer configured for Bragg-Brentano (BB) measurement mode. Molybdenum (Mo) target was used to produce white X-rays by energizing it near 20 keV ±0.01 keV. XRD measurements on XRD and SEM analysis proves successful deposition of pure Cu and CuO thin films and the film thickness measured is 1.432 μm and 0.680 μm respectively. The conclusive findings of the laboratory-based XAS measurements indicate successful acquisition of XAS data with similar spectrum shape of experimental Cu and CuO XANES in comparison with theoretical data. Next, experimental XANES shows clear observation of Cu K-edge peaks for Cu thin film at 8.9737 keV, while Cu K-edge for CuO thin films is not observable. Lastly, there is also presence of significant XANES broadening and which then effect consequent peak shiftings.\",\"PeriodicalId\":18149,\"journal\":{\"name\":\"Malaysian Journal of Fundamental and Applied Sciences\",\"volume\":\"32 18\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian Journal of Fundamental and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/mjfas.v19n6.3143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Fundamental and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/mjfas.v19n6.3143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了利用粉末x射线衍射(XRD)机器开发内部x射线吸收光谱(XAS)系统的另一种材料表征方法。通过分析Cu k边的位置和x射线吸收近边结构(XANES)区域内的吸收光谱形状,研究了内部XAS系统的性能。采用射频磁控溅射机沉积工艺制备了聚酰亚胺带和硅片(100),以铜(Cu)为基材,测试了Cu和氧化铜(CuO)薄膜沉积系统的性能。采用x射线衍射(XRD)进行物相分析,并用扫描电镜(SEM)测量了沉积膜的厚度。基于实验室的XAS测量使用配置为Bragg-Brentano (BB)测量模式的Rigaku SmartLab x射线衍射仪进行。利用钼靶在20 keV±0.01 keV附近通电产生白色x射线。XRD和SEM分析表明,制备出了纯Cu和纯CuO薄膜,薄膜厚度分别为1.432 μm和0.680 μm。基于实验室的XAS测量结果表明,与理论数据相比,实验Cu和CuO XANES的XAS数据具有相似的光谱形状。其次,实验XANES显示,Cu薄膜在8.9737 keV处有清晰的Cu K-edge峰,而CuO薄膜的Cu K-edge没有被观察到。最后,还存在显着的XANES拓宽,然后影响随之而来的峰移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probing the Electronic Properties of Cu and CuO Thin Films via XANES utilizing Powder XRD System
This research introduces an alternative approach on materials characterization by developing an in-house X-ray Absorption Spectroscopy (XAS) system utilizing powder X-ray Diffraction (XRD) machine. The performance of the in-house XAS system was investigated by analysing the position of Cu K-edge and the absorption spectrum shape within the X-ray Absorption Near Edge Structure (XANES) region. Copper (Cu) based samples were used to test the performance of the system where Cu and Copper Oxide (CuO) thin film deposited on polyimide tape and silicon wafer (100) prepared through the deposition process carried out using RF Magnetron Sputtering machine. Phase confirmation analysis were conducted by XRD and the deposited films’ thickness were measured by Scanning Electron Microscope (SEM). The laboratory-based XAS measurement was carried out using Rigaku SmartLab X-ray Diffractometer configured for Bragg-Brentano (BB) measurement mode. Molybdenum (Mo) target was used to produce white X-rays by energizing it near 20 keV ±0.01 keV. XRD measurements on XRD and SEM analysis proves successful deposition of pure Cu and CuO thin films and the film thickness measured is 1.432 μm and 0.680 μm respectively. The conclusive findings of the laboratory-based XAS measurements indicate successful acquisition of XAS data with similar spectrum shape of experimental Cu and CuO XANES in comparison with theoretical data. Next, experimental XANES shows clear observation of Cu K-edge peaks for Cu thin film at 8.9737 keV, while Cu K-edge for CuO thin films is not observable. Lastly, there is also presence of significant XANES broadening and which then effect consequent peak shiftings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
45
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信