基于稀疏多项式混沌展开的控制变量蒙特卡罗估计器

Hui Duan, Giray Okten
{"title":"基于稀疏多项式混沌展开的控制变量蒙特卡罗估计器","authors":"Hui Duan, Giray Okten","doi":"10.18174/sesmo.18568","DOIUrl":null,"url":null,"abstract":"We introduce two control variate Monte Carlo estimators where the control is based on the truncated sparse polynomial chaos expansion of the function in hand. We use the control variate estimators to estimate the lower and upper Sobol' indices in some applications, and compare them numerically with some of the best Monte Carlo estimators in the literature. The results suggest that in computationally expensive problems where a low-order polynomial chaos expansion is not an accurate approximation of the model but highly correlated with it, the control variate estimators are either the best or among the best in terms of efficiency.","PeriodicalId":166291,"journal":{"name":"Socio-Environmental Systems Modelling","volume":"12 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control variate Monte Carlo estimators based on sparse polynomial chaos expansions\",\"authors\":\"Hui Duan, Giray Okten\",\"doi\":\"10.18174/sesmo.18568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce two control variate Monte Carlo estimators where the control is based on the truncated sparse polynomial chaos expansion of the function in hand. We use the control variate estimators to estimate the lower and upper Sobol' indices in some applications, and compare them numerically with some of the best Monte Carlo estimators in the literature. The results suggest that in computationally expensive problems where a low-order polynomial chaos expansion is not an accurate approximation of the model but highly correlated with it, the control variate estimators are either the best or among the best in terms of efficiency.\",\"PeriodicalId\":166291,\"journal\":{\"name\":\"Socio-Environmental Systems Modelling\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Socio-Environmental Systems Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18174/sesmo.18568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Socio-Environmental Systems Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18174/sesmo.18568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了两个控制变量蒙特卡罗估计,其中控制是基于截断稀疏多项式的混沌展开。我们在一些应用中使用控制变量估计器来估计Sobol'的上下指标,并将它们与文献中一些最好的蒙特卡罗估计器进行数值比较。结果表明,在计算代价昂贵的问题中,当低阶多项式混沌展开不是模型的精确近似值但与模型高度相关时,控制变量估计器在效率方面要么是最好的,要么是最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control variate Monte Carlo estimators based on sparse polynomial chaos expansions
We introduce two control variate Monte Carlo estimators where the control is based on the truncated sparse polynomial chaos expansion of the function in hand. We use the control variate estimators to estimate the lower and upper Sobol' indices in some applications, and compare them numerically with some of the best Monte Carlo estimators in the literature. The results suggest that in computationally expensive problems where a low-order polynomial chaos expansion is not an accurate approximation of the model but highly correlated with it, the control variate estimators are either the best or among the best in terms of efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信