Elydio Soares, Talita Santos, Filipe Mazzaro, Fernando Almeida, Bruno Mendes, Ricardo Gomes, Telma Fonseca
{"title":"根据辐射防护法律要求评估巴西米纳斯吉拉斯州铌矿开采尾矿的使用情况","authors":"Elydio Soares, Talita Santos, Filipe Mazzaro, Fernando Almeida, Bruno Mendes, Ricardo Gomes, Telma Fonseca","doi":"10.15392/2319-0612.2023.2173","DOIUrl":null,"url":null,"abstract":"Brazil is the world's largest supplier of niobium to industry, accounting for 98% of world production, with Minas Gerais supplying 80% of total production. The mineral exploration industry generates millions of tons of waste annually. In several mining industries, waste is considered a burden for companies. Based on the radiation protection exemptions for the disposal of mining waste, the study analyses the use of waste as a raw material for the construction industry. The minimum dose rate found for gamma radiation in the waste was 0.24 µSv/h and a maximum dose of 0.33 µSv/h, which corresponds to an annual dose above the population exposure limit. The radio concentrations from gamma spectrometric analyses with the Ge(HP) detector for the two samples are a maximum of 240 Bq/kg for Ra-226 and a maximum of 840 Bq/kg for Ra-228. Despite the dose values determined for gamma radiation, CNEN Resolution 179 of 2014 considers materials with natural radioactive concentrations of radium 226 and 228 of up to 1000 Bq/kg suitable for use in the cement industry. Nevertheless, further analysis must be carried out. Since the tailings contain a concentration of Ra-226 and the radio is a source of radon gas, new analyses need to be carried out targeting the exhalation of radon.","PeriodicalId":9203,"journal":{"name":"Brazilian Journal of Radiation Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of the use of tailings based on the legal requirements for radiation protection, from niobium mining in Minas Gerais – Brazil\",\"authors\":\"Elydio Soares, Talita Santos, Filipe Mazzaro, Fernando Almeida, Bruno Mendes, Ricardo Gomes, Telma Fonseca\",\"doi\":\"10.15392/2319-0612.2023.2173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brazil is the world's largest supplier of niobium to industry, accounting for 98% of world production, with Minas Gerais supplying 80% of total production. The mineral exploration industry generates millions of tons of waste annually. In several mining industries, waste is considered a burden for companies. Based on the radiation protection exemptions for the disposal of mining waste, the study analyses the use of waste as a raw material for the construction industry. The minimum dose rate found for gamma radiation in the waste was 0.24 µSv/h and a maximum dose of 0.33 µSv/h, which corresponds to an annual dose above the population exposure limit. The radio concentrations from gamma spectrometric analyses with the Ge(HP) detector for the two samples are a maximum of 240 Bq/kg for Ra-226 and a maximum of 840 Bq/kg for Ra-228. Despite the dose values determined for gamma radiation, CNEN Resolution 179 of 2014 considers materials with natural radioactive concentrations of radium 226 and 228 of up to 1000 Bq/kg suitable for use in the cement industry. Nevertheless, further analysis must be carried out. Since the tailings contain a concentration of Ra-226 and the radio is a source of radon gas, new analyses need to be carried out targeting the exhalation of radon.\",\"PeriodicalId\":9203,\"journal\":{\"name\":\"Brazilian Journal of Radiation Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Radiation Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15392/2319-0612.2023.2173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Radiation Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15392/2319-0612.2023.2173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessment of the use of tailings based on the legal requirements for radiation protection, from niobium mining in Minas Gerais – Brazil
Brazil is the world's largest supplier of niobium to industry, accounting for 98% of world production, with Minas Gerais supplying 80% of total production. The mineral exploration industry generates millions of tons of waste annually. In several mining industries, waste is considered a burden for companies. Based on the radiation protection exemptions for the disposal of mining waste, the study analyses the use of waste as a raw material for the construction industry. The minimum dose rate found for gamma radiation in the waste was 0.24 µSv/h and a maximum dose of 0.33 µSv/h, which corresponds to an annual dose above the population exposure limit. The radio concentrations from gamma spectrometric analyses with the Ge(HP) detector for the two samples are a maximum of 240 Bq/kg for Ra-226 and a maximum of 840 Bq/kg for Ra-228. Despite the dose values determined for gamma radiation, CNEN Resolution 179 of 2014 considers materials with natural radioactive concentrations of radium 226 and 228 of up to 1000 Bq/kg suitable for use in the cement industry. Nevertheless, further analysis must be carried out. Since the tailings contain a concentration of Ra-226 and the radio is a source of radon gas, new analyses need to be carried out targeting the exhalation of radon.