采用 CRITIC 的多标准广义 L-R 直觉模糊 TOPSIS 技术进行河水污染分类

IF 0.8 Q3 MULTIDISCIPLINARY SCIENCES
Muhammad Asyran Shafie, Daud Mohamad, Seripah Awang Kechil
{"title":"采用 CRITIC 的多标准广义 L-R 直觉模糊 TOPSIS 技术进行河水污染分类","authors":"Muhammad Asyran Shafie, Daud Mohamad, Seripah Awang Kechil","doi":"10.11113/mjfas.v19n6.3105","DOIUrl":null,"url":null,"abstract":"A generalised L-R intuitionistic fuzzy numbers is an L-R intuitionistic fuzzy numbers that incorporates confidence level for both membership and non-membership functions. Therefore, this intuitionistic fuzzy number is suitable for classifying the river water pollution. This study aims to introduce the generalised L-R intuitionistic fuzzy numbers (GLRIFNs) which includes the membership and non-membership functions to classify the river water pollution using TOPSIS with CRITIC method. Due to the insufficient river data, this study has simulated the river data using the bootstrap method. This study had classified river water pollution for several rivers in Johor, Malaysia, namely Kim Kim River, Sayong River, Telor River, Pelepah River, and Bantang River from 2017 to 2021. The result shows that the Bantang River is the cleanest river, while the Kim Kim River is the most polluted river. The results proved that the GLRIFNs is quite a reliable method to classify river water pollution.","PeriodicalId":18149,"journal":{"name":"Malaysian Journal of Fundamental and Applied Sciences","volume":"3 8","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-Criteria Generalised L-R Intuitionistic Fuzzy TOPSIS with CRITIC for River Water Pollution Classification\",\"authors\":\"Muhammad Asyran Shafie, Daud Mohamad, Seripah Awang Kechil\",\"doi\":\"10.11113/mjfas.v19n6.3105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A generalised L-R intuitionistic fuzzy numbers is an L-R intuitionistic fuzzy numbers that incorporates confidence level for both membership and non-membership functions. Therefore, this intuitionistic fuzzy number is suitable for classifying the river water pollution. This study aims to introduce the generalised L-R intuitionistic fuzzy numbers (GLRIFNs) which includes the membership and non-membership functions to classify the river water pollution using TOPSIS with CRITIC method. Due to the insufficient river data, this study has simulated the river data using the bootstrap method. This study had classified river water pollution for several rivers in Johor, Malaysia, namely Kim Kim River, Sayong River, Telor River, Pelepah River, and Bantang River from 2017 to 2021. The result shows that the Bantang River is the cleanest river, while the Kim Kim River is the most polluted river. The results proved that the GLRIFNs is quite a reliable method to classify river water pollution.\",\"PeriodicalId\":18149,\"journal\":{\"name\":\"Malaysian Journal of Fundamental and Applied Sciences\",\"volume\":\"3 8\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian Journal of Fundamental and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/mjfas.v19n6.3105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Fundamental and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/mjfas.v19n6.3105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

广义的L-R直觉模糊数是包含隶属函数和非隶属函数置信水平的L-R直觉模糊数。因此,这种直观模糊数适合于对河流水污染进行分类。本研究旨在引入广义L-R直觉模糊数(GLRIFNs),包括隶属函数和非隶属函数,利用TOPSIS与CRITIC方法对河流水污染进行分类。由于河流数据不足,本研究采用bootstrap方法模拟河流数据。本研究对2017 - 2021年马来西亚柔佛州的金金河、Sayong河、Telor河、Pelepah河、Bantang河等几条河流进行了河流水污染分类。结果表明,班塘河是最干净的河流,金金河是污染最严重的河流。结果表明,GLRIFNs是一种较为可靠的河流水污染分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-Criteria Generalised L-R Intuitionistic Fuzzy TOPSIS with CRITIC for River Water Pollution Classification
A generalised L-R intuitionistic fuzzy numbers is an L-R intuitionistic fuzzy numbers that incorporates confidence level for both membership and non-membership functions. Therefore, this intuitionistic fuzzy number is suitable for classifying the river water pollution. This study aims to introduce the generalised L-R intuitionistic fuzzy numbers (GLRIFNs) which includes the membership and non-membership functions to classify the river water pollution using TOPSIS with CRITIC method. Due to the insufficient river data, this study has simulated the river data using the bootstrap method. This study had classified river water pollution for several rivers in Johor, Malaysia, namely Kim Kim River, Sayong River, Telor River, Pelepah River, and Bantang River from 2017 to 2021. The result shows that the Bantang River is the cleanest river, while the Kim Kim River is the most polluted river. The results proved that the GLRIFNs is quite a reliable method to classify river water pollution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
45
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信