与昆虫病原线虫冷藏存活率相关的基因型标记

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Christopher Ogaya, Yohannes Moges, Verena Dörfler, Mike Barg, R. Ehlers, Carlos Molina
{"title":"与昆虫病原线虫冷藏存活率相关的基因型标记","authors":"Christopher Ogaya, Yohannes Moges, Verena Dörfler, Mike Barg, R. Ehlers, Carlos Molina","doi":"10.1163/15685411-bja10295","DOIUrl":null,"url":null,"abstract":"\nLimited shelf life is a major constraint to successful commercialisation of entomopathogenic nematodes (EPN), and to extend shelf life, dauer juveniles (DJ) are formulated and stored at low temperatures (4-8°C). We evaluated the cold storage potential of strains of Heterorhabditis bacteriophora formulated in diatomaceous earth at storage temperatures between 5 and 9°C. When assessing DJ decline to reach 75% survival (MT75) in the formulation for the respective temperatures, H. bacteriophora strain HB4 had the highest survival of 25 days at 9°C, while strain D2D6 survived longest at 8°C for 28 days. A set of 22 H. bacteriophora wild type inbred lines was then phenotyped for cold tolerance in water under oxidative stress in 70 mM H2O2 at 2°C. The MT50 (time to 50% survival) ranged from 11 to 23 days. The phenotypic data were correlated with the respective genotypic data, identifying four single nucleotide polymorphic (SNP) markers associated with cold tolerance. The survival of two lines (PT11 and IR11) with opposite extreme cold tolerance pheno- and genotypes was evaluated in diatomaceous earth formulation at 2°C with the cold tolerant IR11 surviving 3 days longer than PT11. Our study yields a set of valuable SNP markers employable in rapid genotyping of cold tolerance and tracking this trait during the breeding process.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genotypic markers associated with cold storage survival of the entomopathogenic nematode Heterorhabditis bacteriophora\",\"authors\":\"Christopher Ogaya, Yohannes Moges, Verena Dörfler, Mike Barg, R. Ehlers, Carlos Molina\",\"doi\":\"10.1163/15685411-bja10295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nLimited shelf life is a major constraint to successful commercialisation of entomopathogenic nematodes (EPN), and to extend shelf life, dauer juveniles (DJ) are formulated and stored at low temperatures (4-8°C). We evaluated the cold storage potential of strains of Heterorhabditis bacteriophora formulated in diatomaceous earth at storage temperatures between 5 and 9°C. When assessing DJ decline to reach 75% survival (MT75) in the formulation for the respective temperatures, H. bacteriophora strain HB4 had the highest survival of 25 days at 9°C, while strain D2D6 survived longest at 8°C for 28 days. A set of 22 H. bacteriophora wild type inbred lines was then phenotyped for cold tolerance in water under oxidative stress in 70 mM H2O2 at 2°C. The MT50 (time to 50% survival) ranged from 11 to 23 days. The phenotypic data were correlated with the respective genotypic data, identifying four single nucleotide polymorphic (SNP) markers associated with cold tolerance. The survival of two lines (PT11 and IR11) with opposite extreme cold tolerance pheno- and genotypes was evaluated in diatomaceous earth formulation at 2°C with the cold tolerant IR11 surviving 3 days longer than PT11. Our study yields a set of valuable SNP markers employable in rapid genotyping of cold tolerance and tracking this trait during the breeding process.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1163/15685411-bja10295\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1163/15685411-bja10295","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有限的保质期是昆虫病原性线虫(EPN)成功商业化的主要制约因素,为了延长保质期,我们配制了dawer幼虫(DJ),并在低温(4-8°C)下储存。我们评估了在硅藻土中配制的异habditis bacteriophora菌株在5 - 9°C的储存温度下的冷藏潜力。在不同温度下,当评估配方中DJ下降达到75%存活率(MT75)时,菌株HB4在9°C下的存活率最高,为25天,而菌株D2D6在8°C下的存活率最长,为28天。在70 mM H2O2和2°C条件下,对22个野生型噬菌体自交系进行了耐冷表型分析。MT50(至50%生存时间)为11 ~ 23天。表型数据与各自的基因型数据相关,鉴定出4个与耐寒性相关的单核苷酸多态性(SNP)标记。在2°C硅藻土配方中,研究了具有相反极端耐寒表型和基因型的两个品系(PT11和IR11)的存活率,耐寒品系IR11比PT11多存活3天。我们的研究产生了一组有价值的SNP标记,可用于快速的耐寒性基因分型和在育种过程中跟踪该性状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genotypic markers associated with cold storage survival of the entomopathogenic nematode Heterorhabditis bacteriophora
Limited shelf life is a major constraint to successful commercialisation of entomopathogenic nematodes (EPN), and to extend shelf life, dauer juveniles (DJ) are formulated and stored at low temperatures (4-8°C). We evaluated the cold storage potential of strains of Heterorhabditis bacteriophora formulated in diatomaceous earth at storage temperatures between 5 and 9°C. When assessing DJ decline to reach 75% survival (MT75) in the formulation for the respective temperatures, H. bacteriophora strain HB4 had the highest survival of 25 days at 9°C, while strain D2D6 survived longest at 8°C for 28 days. A set of 22 H. bacteriophora wild type inbred lines was then phenotyped for cold tolerance in water under oxidative stress in 70 mM H2O2 at 2°C. The MT50 (time to 50% survival) ranged from 11 to 23 days. The phenotypic data were correlated with the respective genotypic data, identifying four single nucleotide polymorphic (SNP) markers associated with cold tolerance. The survival of two lines (PT11 and IR11) with opposite extreme cold tolerance pheno- and genotypes was evaluated in diatomaceous earth formulation at 2°C with the cold tolerant IR11 surviving 3 days longer than PT11. Our study yields a set of valuable SNP markers employable in rapid genotyping of cold tolerance and tracking this trait during the breeding process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信