{"title":"粒子群算法在提高数字化企业管理效率中的创新应用研究","authors":"Xiong Yin","doi":"10.2478/amns.2023.2.01368","DOIUrl":null,"url":null,"abstract":"Abstract This paper constructs a model of the particle swarm algorithm, compares and analyzes the performance of the particle swarm algorithm under the two parameters of w and k in detail, and solves the constrained optimization problem by the particle swarm algorithm. On the basis of the local optimal value to find the global optimal value, the particle swarm algorithm is improved with reference to the particle’s motion state and behavior. Based on the particle swarm algorithm, a digital enterprise management system is constructed to plan enterprise management operations and optimize efficiency. Finally, we compare the performance of different algorithms in enterprise management risk prediction, analyze the correlation between the management system and enterprise management efficiency, and compare the management efficiency of different enterprises to explore the effect of the particle swarm algorithm in digital enterprise management. The results show that the predictive classification effect of the particle swarm algorithm model reaches more than 95% correct rate, and the management system of the particle swarm algorithm presents significance at 1% and 5% significance level for enterprise management efficiency, respectively.","PeriodicalId":52342,"journal":{"name":"Applied Mathematics and Nonlinear Sciences","volume":"21 4","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the Innovative Application of Particle Swarm Algorithm in the Improvement of Management Efficiency of Digital Enterprises\",\"authors\":\"Xiong Yin\",\"doi\":\"10.2478/amns.2023.2.01368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper constructs a model of the particle swarm algorithm, compares and analyzes the performance of the particle swarm algorithm under the two parameters of w and k in detail, and solves the constrained optimization problem by the particle swarm algorithm. On the basis of the local optimal value to find the global optimal value, the particle swarm algorithm is improved with reference to the particle’s motion state and behavior. Based on the particle swarm algorithm, a digital enterprise management system is constructed to plan enterprise management operations and optimize efficiency. Finally, we compare the performance of different algorithms in enterprise management risk prediction, analyze the correlation between the management system and enterprise management efficiency, and compare the management efficiency of different enterprises to explore the effect of the particle swarm algorithm in digital enterprise management. The results show that the predictive classification effect of the particle swarm algorithm model reaches more than 95% correct rate, and the management system of the particle swarm algorithm presents significance at 1% and 5% significance level for enterprise management efficiency, respectively.\",\"PeriodicalId\":52342,\"journal\":{\"name\":\"Applied Mathematics and Nonlinear Sciences\",\"volume\":\"21 4\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Nonlinear Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amns.2023.2.01368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Nonlinear Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amns.2023.2.01368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Research on the Innovative Application of Particle Swarm Algorithm in the Improvement of Management Efficiency of Digital Enterprises
Abstract This paper constructs a model of the particle swarm algorithm, compares and analyzes the performance of the particle swarm algorithm under the two parameters of w and k in detail, and solves the constrained optimization problem by the particle swarm algorithm. On the basis of the local optimal value to find the global optimal value, the particle swarm algorithm is improved with reference to the particle’s motion state and behavior. Based on the particle swarm algorithm, a digital enterprise management system is constructed to plan enterprise management operations and optimize efficiency. Finally, we compare the performance of different algorithms in enterprise management risk prediction, analyze the correlation between the management system and enterprise management efficiency, and compare the management efficiency of different enterprises to explore the effect of the particle swarm algorithm in digital enterprise management. The results show that the predictive classification effect of the particle swarm algorithm model reaches more than 95% correct rate, and the management system of the particle swarm algorithm presents significance at 1% and 5% significance level for enterprise management efficiency, respectively.