Vera Martínez-Barradas, Claudio Inostroza-Blancheteau, Ricardo Tighe-Neira, Jesús Lucina Romero-Romero, Andrés R. Schwember, Patricio Arce-Johnson
{"title":"面临荒漠化的智利种植最多的普通豆类 \"Zorzal \"的耐旱性评估","authors":"Vera Martínez-Barradas, Claudio Inostroza-Blancheteau, Ricardo Tighe-Neira, Jesús Lucina Romero-Romero, Andrés R. Schwember, Patricio Arce-Johnson","doi":"10.1007/s40003-023-00679-2","DOIUrl":null,"url":null,"abstract":"<div><p>During the last decades, water distribution around the globe has been affected by climate change. Particularly, in Chile, the last decade has been marked by a mega-drought period, which has severely impacted agriculture. In this scenario, common bean (<i>Phaseolus vulgaris</i> L.) has been seriously affected due to its dependence on irrigation. In this work, we studied how 'Zorzal,' the most sown cultivar in Chile copes with drought stress and the mechanisms used to deal with it. A greenhouse experiment was performed during the 2019–2020 growing season. Plants were subjected to a severe drought stress suspending irrigation at the pre-flowering stage. Photosynthetic parameters, chlorophyll concentration, relative leaf water content (RWC) and lipid peroxidation were analyzed at 7 and 21 days after water suspension, yield was analyzed at the end of the growing season, and those parameters were compared to a susceptible cultivar of the same gene pool ‘Arroz Tuscola.’ ‘Zorzal’ stood out for having diverse treats associated with drought tolerance, as maintaining stable RWC during drought stress, a better reactive oxygen species scavenging system than ‘Arroz Tuscola,’ and stable root biomass during the drought condition. However, seed production was significantly reduced. Our results evidence that ‘Zorzal,’ the most widely cultivated cultivar of common bean in Chile, has good physiological and anatomical treats for plant survivance under drought stress conditions. However, our study suggests that these characteristics may not be enough to maintain a stable seed production.</p></div>","PeriodicalId":7553,"journal":{"name":"Agricultural Research","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drought Tolerance Evaluation of ‘Zorzal,’ the Most Cultivated Common Bean in Chile, a Country Facing Desertification\",\"authors\":\"Vera Martínez-Barradas, Claudio Inostroza-Blancheteau, Ricardo Tighe-Neira, Jesús Lucina Romero-Romero, Andrés R. Schwember, Patricio Arce-Johnson\",\"doi\":\"10.1007/s40003-023-00679-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>During the last decades, water distribution around the globe has been affected by climate change. Particularly, in Chile, the last decade has been marked by a mega-drought period, which has severely impacted agriculture. In this scenario, common bean (<i>Phaseolus vulgaris</i> L.) has been seriously affected due to its dependence on irrigation. In this work, we studied how 'Zorzal,' the most sown cultivar in Chile copes with drought stress and the mechanisms used to deal with it. A greenhouse experiment was performed during the 2019–2020 growing season. Plants were subjected to a severe drought stress suspending irrigation at the pre-flowering stage. Photosynthetic parameters, chlorophyll concentration, relative leaf water content (RWC) and lipid peroxidation were analyzed at 7 and 21 days after water suspension, yield was analyzed at the end of the growing season, and those parameters were compared to a susceptible cultivar of the same gene pool ‘Arroz Tuscola.’ ‘Zorzal’ stood out for having diverse treats associated with drought tolerance, as maintaining stable RWC during drought stress, a better reactive oxygen species scavenging system than ‘Arroz Tuscola,’ and stable root biomass during the drought condition. However, seed production was significantly reduced. Our results evidence that ‘Zorzal,’ the most widely cultivated cultivar of common bean in Chile, has good physiological and anatomical treats for plant survivance under drought stress conditions. However, our study suggests that these characteristics may not be enough to maintain a stable seed production.</p></div>\",\"PeriodicalId\":7553,\"journal\":{\"name\":\"Agricultural Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40003-023-00679-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40003-023-00679-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
Drought Tolerance Evaluation of ‘Zorzal,’ the Most Cultivated Common Bean in Chile, a Country Facing Desertification
During the last decades, water distribution around the globe has been affected by climate change. Particularly, in Chile, the last decade has been marked by a mega-drought period, which has severely impacted agriculture. In this scenario, common bean (Phaseolus vulgaris L.) has been seriously affected due to its dependence on irrigation. In this work, we studied how 'Zorzal,' the most sown cultivar in Chile copes with drought stress and the mechanisms used to deal with it. A greenhouse experiment was performed during the 2019–2020 growing season. Plants were subjected to a severe drought stress suspending irrigation at the pre-flowering stage. Photosynthetic parameters, chlorophyll concentration, relative leaf water content (RWC) and lipid peroxidation were analyzed at 7 and 21 days after water suspension, yield was analyzed at the end of the growing season, and those parameters were compared to a susceptible cultivar of the same gene pool ‘Arroz Tuscola.’ ‘Zorzal’ stood out for having diverse treats associated with drought tolerance, as maintaining stable RWC during drought stress, a better reactive oxygen species scavenging system than ‘Arroz Tuscola,’ and stable root biomass during the drought condition. However, seed production was significantly reduced. Our results evidence that ‘Zorzal,’ the most widely cultivated cultivar of common bean in Chile, has good physiological and anatomical treats for plant survivance under drought stress conditions. However, our study suggests that these characteristics may not be enough to maintain a stable seed production.
期刊介绍:
The main objective of this initiative is to promote agricultural research and development. The journal will publish high quality original research papers and critical reviews on emerging fields and concepts for providing future directions. The publications will include both applied and basic research covering the following disciplines of agricultural sciences: Genetic resources, genetics and breeding, biotechnology, physiology, biochemistry, management of biotic and abiotic stresses, and nutrition of field crops, horticultural crops, livestock and fishes; agricultural meteorology, environmental sciences, forestry and agro forestry, agronomy, soils and soil management, microbiology, water management, agricultural engineering and technology, agricultural policy, agricultural economics, food nutrition, agricultural statistics, and extension research; impact of climate change and the emerging technologies on agriculture, and the role of agricultural research and innovation for development.