Shugo Takasago, T. Kanakubo, Hiroya Kobayashi, Hideto Sasaki
{"title":"用 AFRP 编织条加固的 PVA 纤维增强水泥基复合材料的粘结和开裂特性","authors":"Shugo Takasago, T. Kanakubo, Hiroya Kobayashi, Hideto Sasaki","doi":"10.3390/fib11120107","DOIUrl":null,"url":null,"abstract":"Easy maintenance and high durability are expected in structures made with fiber-reinforced cementitious composite (FRCC) reinforced with fiber-reinforced polymer (FRP) bars. In this study, we focused on the bond and cracking characteristics of polyvinyl alcohol (PVA)-FRCC reinforced with braided AFRP bars (AFRP/PVA-FRCC). Pullout tests on specimens with varying bond lengths were conducted. Beam specimens were also subjected to four-point bending tests. In the pullout tests, experimental parameters included the cross-sectional dimensions and the fiber volume fractions of PVA-FRCC. A trilinear model for the bond constitutive law (bond stress–loaded-end slip relationship) was proposed. In the pullout bond test with specimens of long bond length, bond strength was found to increase with increases in both the fiber volume fraction and the cross-sectional dimension of the specimens. Bond behavior in specimens of long bond length was analyzed numerically using the proposed bond constitutive law. The calculated average bond stress–loaded-end slip relationships favorably fitted the test results. In bending tests with AFRP/PVA-FRCC beam specimens, high ductility was indicated by the bridging effect of fibers. The number of cracks increased with increases in the fiber volume fraction of PVA-FRCC. In specimens with a fiber volume fraction of 2%, the load reached its maximum value due to compression fracture of the FRCC. The crack width in PVA-FRCC calculated by the predicted formula, considering the bond constitutive law and the fiber bridging law, showed good agreement with the reinforcement strain–crack width relationship obtained from the tests.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":"19 4","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bond and Cracking Characteristics of PVA-Fiber-Reinforced Cementitious Composite Reinforced with Braided AFRP Bars\",\"authors\":\"Shugo Takasago, T. Kanakubo, Hiroya Kobayashi, Hideto Sasaki\",\"doi\":\"10.3390/fib11120107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Easy maintenance and high durability are expected in structures made with fiber-reinforced cementitious composite (FRCC) reinforced with fiber-reinforced polymer (FRP) bars. In this study, we focused on the bond and cracking characteristics of polyvinyl alcohol (PVA)-FRCC reinforced with braided AFRP bars (AFRP/PVA-FRCC). Pullout tests on specimens with varying bond lengths were conducted. Beam specimens were also subjected to four-point bending tests. In the pullout tests, experimental parameters included the cross-sectional dimensions and the fiber volume fractions of PVA-FRCC. A trilinear model for the bond constitutive law (bond stress–loaded-end slip relationship) was proposed. In the pullout bond test with specimens of long bond length, bond strength was found to increase with increases in both the fiber volume fraction and the cross-sectional dimension of the specimens. Bond behavior in specimens of long bond length was analyzed numerically using the proposed bond constitutive law. The calculated average bond stress–loaded-end slip relationships favorably fitted the test results. In bending tests with AFRP/PVA-FRCC beam specimens, high ductility was indicated by the bridging effect of fibers. The number of cracks increased with increases in the fiber volume fraction of PVA-FRCC. In specimens with a fiber volume fraction of 2%, the load reached its maximum value due to compression fracture of the FRCC. The crack width in PVA-FRCC calculated by the predicted formula, considering the bond constitutive law and the fiber bridging law, showed good agreement with the reinforcement strain–crack width relationship obtained from the tests.\",\"PeriodicalId\":12122,\"journal\":{\"name\":\"Fibers\",\"volume\":\"19 4\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fib11120107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib11120107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Bond and Cracking Characteristics of PVA-Fiber-Reinforced Cementitious Composite Reinforced with Braided AFRP Bars
Easy maintenance and high durability are expected in structures made with fiber-reinforced cementitious composite (FRCC) reinforced with fiber-reinforced polymer (FRP) bars. In this study, we focused on the bond and cracking characteristics of polyvinyl alcohol (PVA)-FRCC reinforced with braided AFRP bars (AFRP/PVA-FRCC). Pullout tests on specimens with varying bond lengths were conducted. Beam specimens were also subjected to four-point bending tests. In the pullout tests, experimental parameters included the cross-sectional dimensions and the fiber volume fractions of PVA-FRCC. A trilinear model for the bond constitutive law (bond stress–loaded-end slip relationship) was proposed. In the pullout bond test with specimens of long bond length, bond strength was found to increase with increases in both the fiber volume fraction and the cross-sectional dimension of the specimens. Bond behavior in specimens of long bond length was analyzed numerically using the proposed bond constitutive law. The calculated average bond stress–loaded-end slip relationships favorably fitted the test results. In bending tests with AFRP/PVA-FRCC beam specimens, high ductility was indicated by the bridging effect of fibers. The number of cracks increased with increases in the fiber volume fraction of PVA-FRCC. In specimens with a fiber volume fraction of 2%, the load reached its maximum value due to compression fracture of the FRCC. The crack width in PVA-FRCC calculated by the predicted formula, considering the bond constitutive law and the fiber bridging law, showed good agreement with the reinforcement strain–crack width relationship obtained from the tests.
FibersEngineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍:
Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins