人工智能技术促进高校教育信息化的智慧教学模式构建研究

IF 3.1 Q1 Mathematics
Ying Yin, Hansheng Peng, Hongliang Liu
{"title":"人工智能技术促进高校教育信息化的智慧教学模式构建研究","authors":"Ying Yin, Hansheng Peng, Hongliang Liu","doi":"10.2478/amns.2023.2.01409","DOIUrl":null,"url":null,"abstract":"Abstract Based on subject knowledge mapping, this paper dynamically collects learning data, portrays learners’ learning situations, and accurately regulates the learning process. Personalized learning path recommendations and learning communities are constructed through learner profiling and learning services. Secondly, structural equation modeling was used to hypothesize the three-level elements of the E-GPPE-C model. Finally, 103 college students in smart teaching classes were taken as research subjects, and the utility of the smart teaching model was analyzed separately through the steps of precondition validation and cross-lag model with random intercepts. The results show that the smart teaching model has β =0.286 for deep learning strategy, β =0.211 for the smart classroom, and β =0.20 for classroom participation, and they accurately indicate that smart teaching has a positive facilitating mechanism on the learning ability of college students. This study also provides a useful reference for the practice of smart teaching in various disciplines in colleges and universities.","PeriodicalId":52342,"journal":{"name":"Applied Mathematics and Nonlinear Sciences","volume":"16 10","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the Construction of Smart Teaching Mode with Artificial Intelligence Technology Facilitating Education Informatization in Colleges and Universities\",\"authors\":\"Ying Yin, Hansheng Peng, Hongliang Liu\",\"doi\":\"10.2478/amns.2023.2.01409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Based on subject knowledge mapping, this paper dynamically collects learning data, portrays learners’ learning situations, and accurately regulates the learning process. Personalized learning path recommendations and learning communities are constructed through learner profiling and learning services. Secondly, structural equation modeling was used to hypothesize the three-level elements of the E-GPPE-C model. Finally, 103 college students in smart teaching classes were taken as research subjects, and the utility of the smart teaching model was analyzed separately through the steps of precondition validation and cross-lag model with random intercepts. The results show that the smart teaching model has β =0.286 for deep learning strategy, β =0.211 for the smart classroom, and β =0.20 for classroom participation, and they accurately indicate that smart teaching has a positive facilitating mechanism on the learning ability of college students. This study also provides a useful reference for the practice of smart teaching in various disciplines in colleges and universities.\",\"PeriodicalId\":52342,\"journal\":{\"name\":\"Applied Mathematics and Nonlinear Sciences\",\"volume\":\"16 10\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Nonlinear Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amns.2023.2.01409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Nonlinear Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amns.2023.2.01409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

基于学科知识映射,动态收集学习数据,描绘学习者的学习情境,准确调节学习过程。通过学习者分析和学习服务构建个性化的学习路径推荐和学习社区。其次,采用结构方程模型对e- gpe - c模型的三层元进行了假设;最后以103名高校智能教学班学生为研究对象,分别通过前提验证和随机截距交叉滞后模型两步对智能教学模型的效用进行分析。结果表明,智能教学模式在深度学习策略、智能课堂和课堂参与方面的β =0.286、β =0.211和β =0.20,准确地表明智能教学对大学生学习能力有积极的促进机制。本研究也为高校各学科智能教学的实践提供了有益的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on the Construction of Smart Teaching Mode with Artificial Intelligence Technology Facilitating Education Informatization in Colleges and Universities
Abstract Based on subject knowledge mapping, this paper dynamically collects learning data, portrays learners’ learning situations, and accurately regulates the learning process. Personalized learning path recommendations and learning communities are constructed through learner profiling and learning services. Secondly, structural equation modeling was used to hypothesize the three-level elements of the E-GPPE-C model. Finally, 103 college students in smart teaching classes were taken as research subjects, and the utility of the smart teaching model was analyzed separately through the steps of precondition validation and cross-lag model with random intercepts. The results show that the smart teaching model has β =0.286 for deep learning strategy, β =0.211 for the smart classroom, and β =0.20 for classroom participation, and they accurately indicate that smart teaching has a positive facilitating mechanism on the learning ability of college students. This study also provides a useful reference for the practice of smart teaching in various disciplines in colleges and universities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics and Nonlinear Sciences
Applied Mathematics and Nonlinear Sciences Engineering-Engineering (miscellaneous)
CiteScore
2.90
自引率
25.80%
发文量
203
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信