{"title":"冠醚活性模板合成轮烷","authors":"Dr. Stephen D. P. Fielden","doi":"10.1002/syst.202300048","DOIUrl":null,"url":null,"abstract":"<p>Rotaxanes are interlocked molecules that consist of a macrocycle encircling a stoppered thread. The ability to control relative component positions makes rotaxanes ideal building blocks for constructing functional and responsive molecular machines. Despite the potential of rotaxanes, their challenging synthesis limits their application. One approach to construct rotaxanes is to use an active template synthesis, where a reaction that forms the thread is accelerated in the cavity of a macrocycle. An emerging method of active template synthesis that exploits the ability of crown ether macrocycles to accelerate simple organic reactions is discussed herein. Crown ether active template synthesis (CEATS) permits the rapid and simple synthesis of rotaxanes containing a wide range of functionality. Integrating rotaxane formation with chemical reaction networks has permitted the construction of molecular machines. The simplification of rotaxane synthesis will facilitate their widespread study and application.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202300048","citationCount":"0","resultStr":"{\"title\":\"Crown Ether Active Template Synthesis of Rotaxanes**\",\"authors\":\"Dr. Stephen D. P. Fielden\",\"doi\":\"10.1002/syst.202300048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rotaxanes are interlocked molecules that consist of a macrocycle encircling a stoppered thread. The ability to control relative component positions makes rotaxanes ideal building blocks for constructing functional and responsive molecular machines. Despite the potential of rotaxanes, their challenging synthesis limits their application. One approach to construct rotaxanes is to use an active template synthesis, where a reaction that forms the thread is accelerated in the cavity of a macrocycle. An emerging method of active template synthesis that exploits the ability of crown ether macrocycles to accelerate simple organic reactions is discussed herein. Crown ether active template synthesis (CEATS) permits the rapid and simple synthesis of rotaxanes containing a wide range of functionality. Integrating rotaxane formation with chemical reaction networks has permitted the construction of molecular machines. The simplification of rotaxane synthesis will facilitate their widespread study and application.</p>\",\"PeriodicalId\":72566,\"journal\":{\"name\":\"ChemSystemsChem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202300048\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSystemsChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/syst.202300048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSystemsChem","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/syst.202300048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Crown Ether Active Template Synthesis of Rotaxanes**
Rotaxanes are interlocked molecules that consist of a macrocycle encircling a stoppered thread. The ability to control relative component positions makes rotaxanes ideal building blocks for constructing functional and responsive molecular machines. Despite the potential of rotaxanes, their challenging synthesis limits their application. One approach to construct rotaxanes is to use an active template synthesis, where a reaction that forms the thread is accelerated in the cavity of a macrocycle. An emerging method of active template synthesis that exploits the ability of crown ether macrocycles to accelerate simple organic reactions is discussed herein. Crown ether active template synthesis (CEATS) permits the rapid and simple synthesis of rotaxanes containing a wide range of functionality. Integrating rotaxane formation with chemical reaction networks has permitted the construction of molecular machines. The simplification of rotaxane synthesis will facilitate their widespread study and application.