工业机器人的语义轨迹规划

IF 4.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhou Li, Gengming Xie, Varsha Arya, Kwok Tai Chui
{"title":"工业机器人的语义轨迹规划","authors":"Zhou Li, Gengming Xie, Varsha Arya, Kwok Tai Chui","doi":"10.4018/ijswis.334556","DOIUrl":null,"url":null,"abstract":"The implementation of industrial robots across various sectors has ushered in unparalleled advancements in efficiency, productivity, and safety. This paper explores the domain of semantic trajectory planning in the area of industrial robotics. By adeptly merging physical constraints and semantic knowledge of environments, the proposed methodology enables robots to navigate complex surroundings with utmost precision and efficiency. In a landscape marked by dynamic challenges, the research positions semantic trajectory planning as a linchpin in fostering adaptability. It ensures robots interact safely with their surroundings, providing vital object detection and recognition capabilities. The proposed ResNet model exhibits remarkable classification performance, bolstering overall productivity. The study underscores the significance of this approach in addressing real-world industrial applications while emphasizing accuracy, precision, and enhanced productivity.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"5 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic Trajectory Planning for Industrial Robotics\",\"authors\":\"Zhou Li, Gengming Xie, Varsha Arya, Kwok Tai Chui\",\"doi\":\"10.4018/ijswis.334556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The implementation of industrial robots across various sectors has ushered in unparalleled advancements in efficiency, productivity, and safety. This paper explores the domain of semantic trajectory planning in the area of industrial robotics. By adeptly merging physical constraints and semantic knowledge of environments, the proposed methodology enables robots to navigate complex surroundings with utmost precision and efficiency. In a landscape marked by dynamic challenges, the research positions semantic trajectory planning as a linchpin in fostering adaptability. It ensures robots interact safely with their surroundings, providing vital object detection and recognition capabilities. The proposed ResNet model exhibits remarkable classification performance, bolstering overall productivity. The study underscores the significance of this approach in addressing real-world industrial applications while emphasizing accuracy, precision, and enhanced productivity.\",\"PeriodicalId\":54934,\"journal\":{\"name\":\"International Journal on Semantic Web and Information Systems\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Semantic Web and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijswis.334556\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.334556","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

工业机器人在各个领域的应用在效率、生产率和安全性方面取得了无与伦比的进步。本文探讨了工业机器人领域的语义轨迹规划领域。通过巧妙地融合物理约束和环境的语义知识,所提出的方法使机器人能够以最大的精度和效率导航复杂的环境。在以动态挑战为特征的景观中,研究将语义轨迹规划定位为培养适应性的关键。它确保机器人与周围环境安全互动,提供重要的物体检测和识别能力。提出的ResNet模型表现出显著的分类性能,提高了整体生产率。该研究强调了这种方法在解决现实世界工业应用中的重要性,同时强调了准确性、精度和提高生产率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic Trajectory Planning for Industrial Robotics
The implementation of industrial robots across various sectors has ushered in unparalleled advancements in efficiency, productivity, and safety. This paper explores the domain of semantic trajectory planning in the area of industrial robotics. By adeptly merging physical constraints and semantic knowledge of environments, the proposed methodology enables robots to navigate complex surroundings with utmost precision and efficiency. In a landscape marked by dynamic challenges, the research positions semantic trajectory planning as a linchpin in fostering adaptability. It ensures robots interact safely with their surroundings, providing vital object detection and recognition capabilities. The proposed ResNet model exhibits remarkable classification performance, bolstering overall productivity. The study underscores the significance of this approach in addressing real-world industrial applications while emphasizing accuracy, precision, and enhanced productivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
12.50%
发文量
51
审稿时长
20 months
期刊介绍: The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信