用于间充质干细胞高效扩增和干性保存的 E7 改性明胶微载体

IF 2.1 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yan Li, Qunzi Ge, Lie Ma
{"title":"用于间充质干细胞高效扩增和干性保存的 E7 改性明胶微载体","authors":"Yan Li, Qunzi Ge, Lie Ma","doi":"10.1177/08839115231216999","DOIUrl":null,"url":null,"abstract":"Mesenchymal stem cells (MSCs) possess self-renewal ability, multi-differentiation potential and low immunogenicity, thus serving as an ideal choice for cell therapies. Ex-vivo expansion systems that have been developed to meet clinical demands are faced with two crucial barriers, limited quantity and stemness loss of expanded cells. Hence, it is crucial and feasible to construct microcarriers that can show high and specific affinity to MSCs, and support highly efficient cell expansion with minimal stemness loss. In this study, EPLQLKM (E7) peptides were modified onto gelatin microcarriers by poly (ethylene glycol) (PEG) linkers, which showed great antifouling ability against xenogenic components. The rat bone marrow-derived mesenchymal stem cells (rBMSCs) harvested from the E7-modified gelatin microcarriers achieved better cell attachment, stemness maintenance, viability, and multilineage differentiation potentials, especially those with a higher E7 density. Attributing to the promotion for cell adhesion, E7 functionalization increased the expansion efficiency of rBMSCs with improved quantity and quality simultaneously, thereby providing a novel strategy for scalable expansion to optimize the clinical performance of MSCs.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"E7-modified gelatin microcarriers for efficient expansion and stemness preservation of mesenchymal stem cells\",\"authors\":\"Yan Li, Qunzi Ge, Lie Ma\",\"doi\":\"10.1177/08839115231216999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mesenchymal stem cells (MSCs) possess self-renewal ability, multi-differentiation potential and low immunogenicity, thus serving as an ideal choice for cell therapies. Ex-vivo expansion systems that have been developed to meet clinical demands are faced with two crucial barriers, limited quantity and stemness loss of expanded cells. Hence, it is crucial and feasible to construct microcarriers that can show high and specific affinity to MSCs, and support highly efficient cell expansion with minimal stemness loss. In this study, EPLQLKM (E7) peptides were modified onto gelatin microcarriers by poly (ethylene glycol) (PEG) linkers, which showed great antifouling ability against xenogenic components. The rat bone marrow-derived mesenchymal stem cells (rBMSCs) harvested from the E7-modified gelatin microcarriers achieved better cell attachment, stemness maintenance, viability, and multilineage differentiation potentials, especially those with a higher E7 density. Attributing to the promotion for cell adhesion, E7 functionalization increased the expansion efficiency of rBMSCs with improved quantity and quality simultaneously, thereby providing a novel strategy for scalable expansion to optimize the clinical performance of MSCs.\",\"PeriodicalId\":15038,\"journal\":{\"name\":\"Journal of Bioactive and Compatible Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioactive and Compatible Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08839115231216999\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioactive and Compatible Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08839115231216999","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

间充质干细胞(Mesenchymal stem cells, MSCs)具有自我更新能力、多向分化潜力和低免疫原性,是细胞治疗的理想选择。为满足临床需要而开发的体外扩增系统面临着扩增细胞数量有限和干细胞丧失两个关键障碍。因此,构建对MSCs具有高特异性亲和性的微载体,以最小的干性损失支持高效的细胞扩增是至关重要和可行的。本研究利用聚乙二醇(PEG)连接剂将EPLQLKM (E7)肽修饰在明胶微载体上,对异种组分表现出良好的防污能力。从E7修饰的明胶微载体中获得的大鼠骨髓间充质干细胞(rBMSCs)具有更好的细胞附着、干细胞维持、活力和多系分化潜力,特别是那些具有较高E7密度的细胞。通过促进细胞粘附,E7功能化提高了骨髓间充质干细胞的扩增效率,同时提高了数量和质量,从而为骨髓间充质干细胞的可扩展扩增提供了一种新的策略,优化了骨髓间充质干细胞的临床性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
E7-modified gelatin microcarriers for efficient expansion and stemness preservation of mesenchymal stem cells
Mesenchymal stem cells (MSCs) possess self-renewal ability, multi-differentiation potential and low immunogenicity, thus serving as an ideal choice for cell therapies. Ex-vivo expansion systems that have been developed to meet clinical demands are faced with two crucial barriers, limited quantity and stemness loss of expanded cells. Hence, it is crucial and feasible to construct microcarriers that can show high and specific affinity to MSCs, and support highly efficient cell expansion with minimal stemness loss. In this study, EPLQLKM (E7) peptides were modified onto gelatin microcarriers by poly (ethylene glycol) (PEG) linkers, which showed great antifouling ability against xenogenic components. The rat bone marrow-derived mesenchymal stem cells (rBMSCs) harvested from the E7-modified gelatin microcarriers achieved better cell attachment, stemness maintenance, viability, and multilineage differentiation potentials, especially those with a higher E7 density. Attributing to the promotion for cell adhesion, E7 functionalization increased the expansion efficiency of rBMSCs with improved quantity and quality simultaneously, thereby providing a novel strategy for scalable expansion to optimize the clinical performance of MSCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bioactive and Compatible Polymers
Journal of Bioactive and Compatible Polymers 工程技术-材料科学:生物材料
CiteScore
3.50
自引率
0.00%
发文量
27
审稿时长
2 months
期刊介绍: The use and importance of biomedical polymers, especially in pharmacology, is growing rapidly. The Journal of Bioactive and Compatible Polymers is a fully peer-reviewed scholarly journal that provides biomedical polymer scientists and researchers with new information on important advances in this field. Examples of specific areas of interest to the journal include: polymeric drugs and drug design; polymeric functionalization and structures related to biological activity or compatibility; natural polymer modification to achieve specific biological activity or compatibility; enzyme modelling by polymers; membranes for biological use; liposome stabilization and cell modeling. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信