{"title":"硫酸钕和硫酸镝在不同 pH 值和温度下的溶解度以及硫酸钇、硫酸钠和硫酸铵混合物的影响:加强 OLI 软件的预测能力","authors":"Spencer Cunningham, Maxwell Etherington-Rivas, Gisele Azimi","doi":"10.1016/j.hydromet.2023.106253","DOIUrl":null,"url":null,"abstract":"<div><p><span>This study focuses on investigating the solubilities of two rare earth element (REE) sulfate salts, Nd</span><sub>2</sub>(SO<sub>4</sub>)<sub>3</sub><span> (representing light REEs) and Dy</span><sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> (representing heavy REEs), under various conditions. Four different systems are studied: 1) binary REE<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>–H<sub>2</sub>O system at natural pH and temperatures of 25, 46, 65, and 80 °C, 2) ternary REE<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>–NaOH–H<sub>2</sub>O system, covering a pH range from 7 down to neutral, at temperatures of 25, 46, 65, and 80 °C, 3) ternary REE<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>–Y<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>–H<sub>2</sub>O system, involving Y<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> concentrations ranging from 0 to 20 g/L, pH values of 3 and 7, all at 25 °C, and 4) quaternary REE<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>–Na<sub>2</sub>SO<sub>4</sub>–(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>–H<sub>2</sub>O system, encompassing Na<sub>2</sub>SO<sub>4</sub> and (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> concentrations varying from 0 to 20 g/L, pH values of 3 and 7, and at 25 °C. Solubilities of Nd<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> and Dy<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> decrease as temperature rises, attributed to the exothermic dissolution reactions. Within pH 2 to 5, solubilities remain relatively constant, but at higher pH, they decrease due to the formation of REE<sub>2</sub>(SO<sub>4</sub>)(OH)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub> (rare earth sulfate hydroxide hydrate). Addition of Y<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> does not significantly affect solubilities because of the relatively low Y<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> concentration range (below 0.03 mol/kg of water), but solubilities are lower at pH 7 due to <span><math><msub><mi>REE</mi><mn>2</mn></msub><mfenced><mrow><mi>S</mi><msub><mi>O</mi><mn>4</mn></msub></mrow></mfenced><msub><mfenced><mi>OH</mi></mfenced><mn>4</mn></msub><msub><mfenced><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow></mfenced><mn>2</mn></msub></math></span> formation. For Nd<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, solubility decreases with increasing Na<sub>2</sub>SO<sub>4</sub> and (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> concentrations, especially at pH 3 due to the formation of NaNd(SO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O) (sodium neodymium bis(sulfate) hydrate) which is also confirmed by the decrease in Na<sub>2</sub>SO<sub>4</sub> concentration compared with the target value. However, at pH 7, the concentration of Na<sub>2</sub>SO<sub>4</sub> is much closer to the target range. This suggests that the formation of NaNd(SO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O) is less significant at pH 7 and most of Nd precipitates as <span><math><msub><mi>Nd</mi><mn>2</mn></msub><mfenced><mrow><mi>S</mi><msub><mi>O</mi><mn>4</mn></msub></mrow></mfenced><msub><mfenced><mi>OH</mi></mfenced><mn>4</mn></msub><msub><mfenced><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow></mfenced><mn>2</mn></msub></math></span>. For Dy<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, solubility increases with increasing sulfate concentrations again due to the to the formation of REESO<sub>4</sub><sup>+</sup> and REE(SO<sub>4</sub>)<sub>2</sub><sup>−</sup> complexes but the solubility is lower at pH 7 due to <span><math><msub><mi>Dy</mi><mn>2</mn></msub><mfenced><mrow><mi>S</mi><msub><mi>O</mi><mn>4</mn></msub></mrow></mfenced><msub><mfenced><mi>OH</mi></mfenced><mn>4</mn></msub><msub><mfenced><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow></mfenced><mn>2</mn></msub></math></span> and <span><math><mi>Dy</mi><mfenced><mrow><mi>S</mi><msub><mi>O</mi><mn>4</mn></msub></mrow></mfenced><mfenced><mi>OH</mi></mfenced></math></span> formation. The outcomes of this investigation represent a notable augmentation to the existing repository of solubility data for Nd<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> and Dy<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>. These particular systems were deliberately chosen to emulate the process of extracting rare earth elements (REEs) from ion-adsorbed clays. Nonetheless, the implications of this research extend beyond this context and hold relevance for various procedures that involve the handling of REEs in sulfate-based environments. One prominent application of these findings lies in the augmentation of thermodynamic models, notably the MSE model integrated into the OLI software. Through the incorporation of this new dataset, the OLI software is poised to become a more potent tool for forecasting and simulating the chemistry of rare earth sulfate systems. This advancement bears significant promise for forthcoming research endeavors and industrial applications where precise modeling of REE behavior is of paramount importance.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solubility of neodymium and dysprosium sulfates at different pH and temperature and the effect of yttrium sulfate, sodium sulfate, and ammonium sulfate mixtures: Strengthening the predictive capacities of the OLI software\",\"authors\":\"Spencer Cunningham, Maxwell Etherington-Rivas, Gisele Azimi\",\"doi\":\"10.1016/j.hydromet.2023.106253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>This study focuses on investigating the solubilities of two rare earth element (REE) sulfate salts, Nd</span><sub>2</sub>(SO<sub>4</sub>)<sub>3</sub><span> (representing light REEs) and Dy</span><sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> (representing heavy REEs), under various conditions. Four different systems are studied: 1) binary REE<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>–H<sub>2</sub>O system at natural pH and temperatures of 25, 46, 65, and 80 °C, 2) ternary REE<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>–NaOH–H<sub>2</sub>O system, covering a pH range from 7 down to neutral, at temperatures of 25, 46, 65, and 80 °C, 3) ternary REE<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>–Y<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>–H<sub>2</sub>O system, involving Y<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> concentrations ranging from 0 to 20 g/L, pH values of 3 and 7, all at 25 °C, and 4) quaternary REE<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>–Na<sub>2</sub>SO<sub>4</sub>–(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>–H<sub>2</sub>O system, encompassing Na<sub>2</sub>SO<sub>4</sub> and (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> concentrations varying from 0 to 20 g/L, pH values of 3 and 7, and at 25 °C. Solubilities of Nd<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> and Dy<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> decrease as temperature rises, attributed to the exothermic dissolution reactions. Within pH 2 to 5, solubilities remain relatively constant, but at higher pH, they decrease due to the formation of REE<sub>2</sub>(SO<sub>4</sub>)(OH)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub> (rare earth sulfate hydroxide hydrate). Addition of Y<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> does not significantly affect solubilities because of the relatively low Y<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> concentration range (below 0.03 mol/kg of water), but solubilities are lower at pH 7 due to <span><math><msub><mi>REE</mi><mn>2</mn></msub><mfenced><mrow><mi>S</mi><msub><mi>O</mi><mn>4</mn></msub></mrow></mfenced><msub><mfenced><mi>OH</mi></mfenced><mn>4</mn></msub><msub><mfenced><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow></mfenced><mn>2</mn></msub></math></span> formation. For Nd<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, solubility decreases with increasing Na<sub>2</sub>SO<sub>4</sub> and (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> concentrations, especially at pH 3 due to the formation of NaNd(SO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O) (sodium neodymium bis(sulfate) hydrate) which is also confirmed by the decrease in Na<sub>2</sub>SO<sub>4</sub> concentration compared with the target value. However, at pH 7, the concentration of Na<sub>2</sub>SO<sub>4</sub> is much closer to the target range. This suggests that the formation of NaNd(SO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O) is less significant at pH 7 and most of Nd precipitates as <span><math><msub><mi>Nd</mi><mn>2</mn></msub><mfenced><mrow><mi>S</mi><msub><mi>O</mi><mn>4</mn></msub></mrow></mfenced><msub><mfenced><mi>OH</mi></mfenced><mn>4</mn></msub><msub><mfenced><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow></mfenced><mn>2</mn></msub></math></span>. For Dy<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, solubility increases with increasing sulfate concentrations again due to the to the formation of REESO<sub>4</sub><sup>+</sup> and REE(SO<sub>4</sub>)<sub>2</sub><sup>−</sup> complexes but the solubility is lower at pH 7 due to <span><math><msub><mi>Dy</mi><mn>2</mn></msub><mfenced><mrow><mi>S</mi><msub><mi>O</mi><mn>4</mn></msub></mrow></mfenced><msub><mfenced><mi>OH</mi></mfenced><mn>4</mn></msub><msub><mfenced><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow></mfenced><mn>2</mn></msub></math></span> and <span><math><mi>Dy</mi><mfenced><mrow><mi>S</mi><msub><mi>O</mi><mn>4</mn></msub></mrow></mfenced><mfenced><mi>OH</mi></mfenced></math></span> formation. The outcomes of this investigation represent a notable augmentation to the existing repository of solubility data for Nd<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> and Dy<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>. These particular systems were deliberately chosen to emulate the process of extracting rare earth elements (REEs) from ion-adsorbed clays. Nonetheless, the implications of this research extend beyond this context and hold relevance for various procedures that involve the handling of REEs in sulfate-based environments. One prominent application of these findings lies in the augmentation of thermodynamic models, notably the MSE model integrated into the OLI software. Through the incorporation of this new dataset, the OLI software is poised to become a more potent tool for forecasting and simulating the chemistry of rare earth sulfate systems. This advancement bears significant promise for forthcoming research endeavors and industrial applications where precise modeling of REE behavior is of paramount importance.</p></div>\",\"PeriodicalId\":13193,\"journal\":{\"name\":\"Hydrometallurgy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrometallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304386X23002360\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X23002360","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
本文主要研究了两种稀土硫酸盐盐Nd2(SO4)3(轻稀土)和Dy2(SO4)3(重稀土)在不同条件下的溶解度。研究了四种不同的系统:1)二进制REE2(哌嗪3-H2O系统自然pH值和温度25岁,46岁,65年和80年 °C, 2)三元REE2 (SO4) 3-NaOH-H2O系统,包括pH值范围从7到中性,46岁,这样的温度在25日,65年和80年 °C, 3)三元REE2 (SO4) 3-Y2 (SO4) 3-H2O系统,涉及Y2 (SO4) 3浓度范围从0到20 g / L, pH值为3和7,在25 °C,和4)第四纪REE2 (SO4) 3-Na2SO4 - (NH4) 2 so4-h2o系统,包括Na2SO4和(NH4) 2 SO4浓度不同,从0到20 g / L,pH值为3和7,温度为25 °C。由于放热溶解反应,Nd2(SO4)3和Dy2(SO4)3的溶解度随温度升高而降低。在pH 2 ~ 5范围内,溶解度保持相对稳定,但在较高的pH下,由于REE2(SO4)(OH)4(H2O)2(氢氧化硫酸稀土)的形成,溶解度降低。Y2(SO4)3的加入对溶解度没有显著影响,因为Y2(SO4)3的浓度范围相对较低(低于0.03 mol/kg水),但由于REE2SO4OH4H2O2的形成,在pH 7时溶解度降低。对于Nd2(SO4)3,溶解度随着Na2SO4和(NH4)2SO4浓度的增加而降低,特别是在pH 3时,由于NaNd(SO4)2(H2O)(水合钕(硫酸)钠)的形成,与目标值相比,Na2SO4浓度的降低也证实了这一点。而在pH 7时,Na2SO4的浓度更接近目标范围。这表明在pH 7下NaNd(SO4)2(H2O)的形成不太明显,大部分Nd以Nd2SO4OH4H2O2的形式析出。对于Dy2(SO4)3,由于REESO4+和REE(SO4)2−络合物的形成,其溶解度再次随着硫酸盐浓度的增加而增加,但由于Dy2SO4OH4H2O2和DySO4OH的形成,其溶解度在pH 7时降低。这项研究的结果对Nd2(SO4)3和Dy2(SO4)3的溶解度数据有了显著的补充。这些特殊的系统被刻意选择来模拟从离子吸附粘土中提取稀土元素(ree)的过程。尽管如此,这项研究的意义超出了这一范围,并与涉及在硫酸盐基环境中处理稀土元素的各种程序相关。这些发现的一个突出应用在于热力学模型的扩充,特别是集成到OLI软件中的MSE模型。通过整合这个新的数据集,OLI软件将成为预测和模拟稀土硫酸盐系统化学的更有效工具。这一进展对未来的研究工作和工业应用具有重要意义,其中REE行为的精确建模至关重要。
Solubility of neodymium and dysprosium sulfates at different pH and temperature and the effect of yttrium sulfate, sodium sulfate, and ammonium sulfate mixtures: Strengthening the predictive capacities of the OLI software
This study focuses on investigating the solubilities of two rare earth element (REE) sulfate salts, Nd2(SO4)3 (representing light REEs) and Dy2(SO4)3 (representing heavy REEs), under various conditions. Four different systems are studied: 1) binary REE2(SO4)3–H2O system at natural pH and temperatures of 25, 46, 65, and 80 °C, 2) ternary REE2(SO4)3–NaOH–H2O system, covering a pH range from 7 down to neutral, at temperatures of 25, 46, 65, and 80 °C, 3) ternary REE2(SO4)3–Y2(SO4)3–H2O system, involving Y2(SO4)3 concentrations ranging from 0 to 20 g/L, pH values of 3 and 7, all at 25 °C, and 4) quaternary REE2(SO4)3–Na2SO4–(NH4)2SO4–H2O system, encompassing Na2SO4 and (NH4)2SO4 concentrations varying from 0 to 20 g/L, pH values of 3 and 7, and at 25 °C. Solubilities of Nd2(SO4)3 and Dy2(SO4)3 decrease as temperature rises, attributed to the exothermic dissolution reactions. Within pH 2 to 5, solubilities remain relatively constant, but at higher pH, they decrease due to the formation of REE2(SO4)(OH)4(H2O)2 (rare earth sulfate hydroxide hydrate). Addition of Y2(SO4)3 does not significantly affect solubilities because of the relatively low Y2(SO4)3 concentration range (below 0.03 mol/kg of water), but solubilities are lower at pH 7 due to formation. For Nd2(SO4)3, solubility decreases with increasing Na2SO4 and (NH4)2SO4 concentrations, especially at pH 3 due to the formation of NaNd(SO4)2(H2O) (sodium neodymium bis(sulfate) hydrate) which is also confirmed by the decrease in Na2SO4 concentration compared with the target value. However, at pH 7, the concentration of Na2SO4 is much closer to the target range. This suggests that the formation of NaNd(SO4)2(H2O) is less significant at pH 7 and most of Nd precipitates as . For Dy2(SO4)3, solubility increases with increasing sulfate concentrations again due to the to the formation of REESO4+ and REE(SO4)2− complexes but the solubility is lower at pH 7 due to and formation. The outcomes of this investigation represent a notable augmentation to the existing repository of solubility data for Nd2(SO4)3 and Dy2(SO4)3. These particular systems were deliberately chosen to emulate the process of extracting rare earth elements (REEs) from ion-adsorbed clays. Nonetheless, the implications of this research extend beyond this context and hold relevance for various procedures that involve the handling of REEs in sulfate-based environments. One prominent application of these findings lies in the augmentation of thermodynamic models, notably the MSE model integrated into the OLI software. Through the incorporation of this new dataset, the OLI software is poised to become a more potent tool for forecasting and simulating the chemistry of rare earth sulfate systems. This advancement bears significant promise for forthcoming research endeavors and industrial applications where precise modeling of REE behavior is of paramount importance.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.