{"title":"用代数方法解决有限域上平面中 (k,n)-arc 的完备性问题","authors":"Gábor Korchmáros , Gábor P. Nagy , Tamás Szőnyi","doi":"10.1016/j.jcta.2023.105851","DOIUrl":null,"url":null,"abstract":"<div><p>In a projective plane over a finite field, complete <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span>-arcs with few characters are rare but interesting objects with several applications to finite geometry and coding theory. Since almost all known examples are large, the construction of small ones, with <em>k</em> close to the order of the plane, is considered a hard problem. A natural candidate to be a small <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span>-arc with few characters is the set <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> of the points of a plane curve <span><math><mi>C</mi></math></span> of degree <em>n</em> (containing no linear components) such that some line meets <span><math><mi>C</mi></math></span> transversally in the plane, i.e. in <em>n</em> pairwise distinct points. Let <span><math><mi>C</mi></math></span> be either the Hermitian curve of degree <span><math><mi>q</mi><mo>+</mo><mn>1</mn></math></span> in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><mi>r</mi></mrow></msup><mo>)</mo></math></span> with <span><math><mi>r</mi><mo>≥</mo><mn>1</mn></math></span>, or the rational BKS curve of degree <span><math><mi>q</mi><mo>+</mo><mn>1</mn></math></span> in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo></math></span> with <em>q</em> odd and <span><math><mi>r</mi><mo>≥</mo><mn>1</mn></math></span>. Then <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> has four and seven characters, respectively. Furthermore, <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> is small as both curves are either maximal or minimal. The completeness problem is investigated by an algebraic approach based on Galois theory and on the Hasse-Weil lower bound. Our main result for the Hermitian case is that <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> is complete for <span><math><mi>r</mi><mo>≥</mo><mn>4</mn></math></span>. For the rational BKS curve, <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> is complete if and only if <em>r</em> is even. If <em>r</em> is odd then the uncovered points by the <span><math><mo>(</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-secants to <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> are exactly the points in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> not lying in <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span>. Adding those points to <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> produces a complete <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-arc in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo></math></span>, with <span><math><mi>k</mi><mo>=</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>+</mo><mi>q</mi></math></span>. The above results do not hold true for <span><math><mi>r</mi><mo>=</mo><mn>2</mn></math></span> and there remain open the case <span><math><mi>r</mi><mo>=</mo><mn>3</mn></math></span> for the Hermitian curve, and the cases <span><math><mi>r</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span> for the rational BKS curve. As a by product we also obtain two results of interest in the study of the Galois inverse problem for <span><math><mtext>PGL</mtext><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"204 ","pages":"Article 105851"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S009731652300119X/pdfft?md5=d82e427ed7135cee4fd8e44a6153c333&pid=1-s2.0-S009731652300119X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Algebraic approach to the completeness problem for (k,n)-arcs in planes over finite fields\",\"authors\":\"Gábor Korchmáros , Gábor P. Nagy , Tamás Szőnyi\",\"doi\":\"10.1016/j.jcta.2023.105851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In a projective plane over a finite field, complete <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span>-arcs with few characters are rare but interesting objects with several applications to finite geometry and coding theory. Since almost all known examples are large, the construction of small ones, with <em>k</em> close to the order of the plane, is considered a hard problem. A natural candidate to be a small <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span>-arc with few characters is the set <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> of the points of a plane curve <span><math><mi>C</mi></math></span> of degree <em>n</em> (containing no linear components) such that some line meets <span><math><mi>C</mi></math></span> transversally in the plane, i.e. in <em>n</em> pairwise distinct points. Let <span><math><mi>C</mi></math></span> be either the Hermitian curve of degree <span><math><mi>q</mi><mo>+</mo><mn>1</mn></math></span> in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><mi>r</mi></mrow></msup><mo>)</mo></math></span> with <span><math><mi>r</mi><mo>≥</mo><mn>1</mn></math></span>, or the rational BKS curve of degree <span><math><mi>q</mi><mo>+</mo><mn>1</mn></math></span> in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo></math></span> with <em>q</em> odd and <span><math><mi>r</mi><mo>≥</mo><mn>1</mn></math></span>. Then <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> has four and seven characters, respectively. Furthermore, <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> is small as both curves are either maximal or minimal. The completeness problem is investigated by an algebraic approach based on Galois theory and on the Hasse-Weil lower bound. Our main result for the Hermitian case is that <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> is complete for <span><math><mi>r</mi><mo>≥</mo><mn>4</mn></math></span>. For the rational BKS curve, <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> is complete if and only if <em>r</em> is even. If <em>r</em> is odd then the uncovered points by the <span><math><mo>(</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-secants to <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> are exactly the points in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> not lying in <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span>. Adding those points to <span><math><mi>Ω</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> produces a complete <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-arc in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo></math></span>, with <span><math><mi>k</mi><mo>=</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>+</mo><mi>q</mi></math></span>. The above results do not hold true for <span><math><mi>r</mi><mo>=</mo><mn>2</mn></math></span> and there remain open the case <span><math><mi>r</mi><mo>=</mo><mn>3</mn></math></span> for the Hermitian curve, and the cases <span><math><mi>r</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span> for the rational BKS curve. As a by product we also obtain two results of interest in the study of the Galois inverse problem for <span><math><mtext>PGL</mtext><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"204 \",\"pages\":\"Article 105851\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S009731652300119X/pdfft?md5=d82e427ed7135cee4fd8e44a6153c333&pid=1-s2.0-S009731652300119X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009731652300119X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009731652300119X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在有限域上的投影面中,字符数很少的完整 (k,n)-arcs 是罕见但有趣的对象,在有限几何和编码理论中有多种应用。由于几乎所有已知的例子都很大,因此构造 k 接近平面阶数的小弧被认为是一个难题。(k,n)-弧的一个自然候选点是阶数为 n 的平面曲线 C 的点(不含线性分量)的集合 Ω(C),该集合使得某条直线与 C 在平面上横向相交,即在 n 个不同的点上成对相交。假设 C 是 PG(2,q2r) 中 r≥1 的 q+1 度赫尔墨斯曲线,或者是 PG(2,qr) 中 q 为奇数且 r≥1 的 q+1 度有理 BKS 曲线,那么 Ω(C) 分别有四个和七个字符。此外,Ω(C) 很小,因为两条曲线要么是最大曲线,要么是最小曲线。我们用基于伽罗瓦理论和哈塞-韦尔下界的代数方法研究了完备性问题。对于赫米特曲线,我们的主要结果是,当 r≥4 时,Ω(C) 是完备的。对于有理 BKS 曲线,当且仅当 r 为偶数时,Ω(C) 是完整的。如果 r 为奇数,那么通过 (q+1)-secants 到 Ω(C) 的未覆盖点正是 PG(2,q) 中不位于 Ω(C) 的点。将这些点添加到 Ω(C) 会在 PG(2,qr) 中产生一个完整的 (k,q+1)- 弧,k=qr+q。上述结果在 r=2 时并不成立,赫米特曲线的 r=3 和有理 BKS 曲线的 r=3,4 两种情况仍未解决。作为副产品,我们还得到了两个对研究 PGL(2,q) 的伽罗瓦逆问题很有意义的结果。
Algebraic approach to the completeness problem for (k,n)-arcs in planes over finite fields
In a projective plane over a finite field, complete -arcs with few characters are rare but interesting objects with several applications to finite geometry and coding theory. Since almost all known examples are large, the construction of small ones, with k close to the order of the plane, is considered a hard problem. A natural candidate to be a small -arc with few characters is the set of the points of a plane curve of degree n (containing no linear components) such that some line meets transversally in the plane, i.e. in n pairwise distinct points. Let be either the Hermitian curve of degree in with , or the rational BKS curve of degree in with q odd and . Then has four and seven characters, respectively. Furthermore, is small as both curves are either maximal or minimal. The completeness problem is investigated by an algebraic approach based on Galois theory and on the Hasse-Weil lower bound. Our main result for the Hermitian case is that is complete for . For the rational BKS curve, is complete if and only if r is even. If r is odd then the uncovered points by the -secants to are exactly the points in not lying in . Adding those points to produces a complete -arc in , with . The above results do not hold true for and there remain open the case for the Hermitian curve, and the cases for the rational BKS curve. As a by product we also obtain two results of interest in the study of the Galois inverse problem for .
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.