Rune Haugseng, Fabian Hebestreit, Sil Linskens, Joost Nuiten
{"title":"二变纤维、因式分解系统和跨类","authors":"Rune Haugseng, Fabian Hebestreit, Sil Linskens, Joost Nuiten","doi":"10.1017/fms.2023.107","DOIUrl":null,"url":null,"abstract":"We prove a universal property for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050942300107X_inline2.png\" /> <jats:tex-math> $\\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-categories of spans in the generality of Barwick’s adequate triples, explicitly describe the cocartesian fibration corresponding to the span functor, and show that the latter restricts to a self-equivalence on the class of orthogonal adequate triples, which we introduce for this purpose. As applications of the machinery we develop, we give a quick proof of Barwick’s unfurling theorem, show that an orthogonal factorisation system arises from a cartesian fibration if and only if it forms an adequate triple (generalising work of Lanari), extend the description of dual (co)cartesian fibrations by Barwick, Glasman and Nardin to two-variable fibrations, explicitly describe parametrised adjoints (extending work of Torii), identify the orthofibration classifying the mapping category functor of an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050942300107X_inline3.png\" /> <jats:tex-math> $(\\infty ,2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-category (building on work of Abellán García and Stern), formally identify the unstraightenings of the identity functor on the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050942300107X_inline4.png\" /> <jats:tex-math> $\\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-category of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050942300107X_inline5.png\" /> <jats:tex-math> $\\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-categories with the (op)lax under-categories of a point, and deduce a certain naturality property of the Yoneda embedding (answering a question of Clausen).","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Two-variable fibrations, factorisation systems and -categories of spans\",\"authors\":\"Rune Haugseng, Fabian Hebestreit, Sil Linskens, Joost Nuiten\",\"doi\":\"10.1017/fms.2023.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a universal property for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S205050942300107X_inline2.png\\\" /> <jats:tex-math> $\\\\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-categories of spans in the generality of Barwick’s adequate triples, explicitly describe the cocartesian fibration corresponding to the span functor, and show that the latter restricts to a self-equivalence on the class of orthogonal adequate triples, which we introduce for this purpose. As applications of the machinery we develop, we give a quick proof of Barwick’s unfurling theorem, show that an orthogonal factorisation system arises from a cartesian fibration if and only if it forms an adequate triple (generalising work of Lanari), extend the description of dual (co)cartesian fibrations by Barwick, Glasman and Nardin to two-variable fibrations, explicitly describe parametrised adjoints (extending work of Torii), identify the orthofibration classifying the mapping category functor of an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S205050942300107X_inline3.png\\\" /> <jats:tex-math> $(\\\\infty ,2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-category (building on work of Abellán García and Stern), formally identify the unstraightenings of the identity functor on the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S205050942300107X_inline4.png\\\" /> <jats:tex-math> $\\\\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-category of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S205050942300107X_inline5.png\\\" /> <jats:tex-math> $\\\\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-categories with the (op)lax under-categories of a point, and deduce a certain naturality property of the Yoneda embedding (answering a question of Clausen).\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2023.107\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2023.107","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12
摘要
我们证明了在巴维克适当三元组的一般性中,$\infty $ -跨类的一个普遍性质,明确描述了与跨函子相对应的卡方傅立叶,并证明了后者限制在正交适当三元组类上的自等价性,我们为此引入了正交适当三元组类。作为我们开发的机制的应用,我们给出了巴维克展开定理的快速证明,证明了当且仅当一个正交因式分解系统形成一个适当的三元组时,它才会从一个卡方振动中产生(概括了拉纳里的工作),将巴维克、格拉斯曼和纳丁对二(共)卡方振动的描述扩展到二变量振动,明确描述了参数化的邻接(扩展了鸟居的工作)、在阿贝兰-加西亚(Abellán García)和斯特恩(Stern)的工作的基础上,确定了对$(\infty ,2)$ -类的映射类别函子进行分类的正振动(orthofibration);正式确定了$\infty $ -类的$\infty $ -类上的身份函子的非直化(unstraightenings)与点的(op)lax下类(under-categories of a point);并推导了米田嵌入(Yoneda embedding)的某个自然属性(回答了克劳森(Clausen)的一个问题)。
Two-variable fibrations, factorisation systems and -categories of spans
We prove a universal property for $\infty $ -categories of spans in the generality of Barwick’s adequate triples, explicitly describe the cocartesian fibration corresponding to the span functor, and show that the latter restricts to a self-equivalence on the class of orthogonal adequate triples, which we introduce for this purpose. As applications of the machinery we develop, we give a quick proof of Barwick’s unfurling theorem, show that an orthogonal factorisation system arises from a cartesian fibration if and only if it forms an adequate triple (generalising work of Lanari), extend the description of dual (co)cartesian fibrations by Barwick, Glasman and Nardin to two-variable fibrations, explicitly describe parametrised adjoints (extending work of Torii), identify the orthofibration classifying the mapping category functor of an $(\infty ,2)$ -category (building on work of Abellán García and Stern), formally identify the unstraightenings of the identity functor on the $\infty $ -category of $\infty $ -categories with the (op)lax under-categories of a point, and deduce a certain naturality property of the Yoneda embedding (answering a question of Clausen).
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.