{"title":"为中等城市开发城市交通噪声模型:坎普尔案例研究","authors":"Saurabh Upadhyay, Manoranjan Parida, Brind Kumar, Praveen Kumar","doi":"10.1007/s12647-023-00693-3","DOIUrl":null,"url":null,"abstract":"<div><p>Traffic noise is emerging as major challenge for cities in India. It affects human health in terms of annoyance and other major health problems. This study aims to develop a traffic noise model for mid-sized cities. Vehicle noise and spot speed of individual vehicles were studied to develop a reference energy mean emission level (REMEL) by using the sound level meter from a reference distance of 7.5 m from the centerline of a nearby lane under free flow condition. This urban traffic noise model is specific to different geographical regions and depends on vehicle categories and characteristics of in use vehicles. Subsequently, mid-block studies were conducted for measuring traffic noise <i>L</i><sub>eq</sub> (in dB(A)), average speed, and traffic volumes of different vehicle categories. To develop the traffic noise prediction model, physical condition of the road, carriageway width, width of the footpath, median size, number of lanes, and ground cover (hard or soft) need to be accounted for. A modified traffic noise prediction model has been developed using REMEL models and different adjustment factors. Subsequently, the correlation analysis was performed between predicted and observed <i>L</i><sub>eq</sub> (in dB(A)) to check the model fitness by correlation coefficient <i>R</i><sup>2</sup> = 0.76 and mean absolute percentage error is ranged from 0.8 to 1.2% for the predicted and observed <i>L</i><sub>eq</sub> at all the selected sites of measurement periods for the Kanpur city. With this calibrated model, a noise map has been developed to identify noise hotspots during different time intervals within the city.</p></div>","PeriodicalId":689,"journal":{"name":"MAPAN","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Urban Traffic Noise Model for a Mid-Sized City: A Case Study of Kanpur\",\"authors\":\"Saurabh Upadhyay, Manoranjan Parida, Brind Kumar, Praveen Kumar\",\"doi\":\"10.1007/s12647-023-00693-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traffic noise is emerging as major challenge for cities in India. It affects human health in terms of annoyance and other major health problems. This study aims to develop a traffic noise model for mid-sized cities. Vehicle noise and spot speed of individual vehicles were studied to develop a reference energy mean emission level (REMEL) by using the sound level meter from a reference distance of 7.5 m from the centerline of a nearby lane under free flow condition. This urban traffic noise model is specific to different geographical regions and depends on vehicle categories and characteristics of in use vehicles. Subsequently, mid-block studies were conducted for measuring traffic noise <i>L</i><sub>eq</sub> (in dB(A)), average speed, and traffic volumes of different vehicle categories. To develop the traffic noise prediction model, physical condition of the road, carriageway width, width of the footpath, median size, number of lanes, and ground cover (hard or soft) need to be accounted for. A modified traffic noise prediction model has been developed using REMEL models and different adjustment factors. Subsequently, the correlation analysis was performed between predicted and observed <i>L</i><sub>eq</sub> (in dB(A)) to check the model fitness by correlation coefficient <i>R</i><sup>2</sup> = 0.76 and mean absolute percentage error is ranged from 0.8 to 1.2% for the predicted and observed <i>L</i><sub>eq</sub> at all the selected sites of measurement periods for the Kanpur city. With this calibrated model, a noise map has been developed to identify noise hotspots during different time intervals within the city.</p></div>\",\"PeriodicalId\":689,\"journal\":{\"name\":\"MAPAN\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MAPAN\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12647-023-00693-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAPAN","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12647-023-00693-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Development of Urban Traffic Noise Model for a Mid-Sized City: A Case Study of Kanpur
Traffic noise is emerging as major challenge for cities in India. It affects human health in terms of annoyance and other major health problems. This study aims to develop a traffic noise model for mid-sized cities. Vehicle noise and spot speed of individual vehicles were studied to develop a reference energy mean emission level (REMEL) by using the sound level meter from a reference distance of 7.5 m from the centerline of a nearby lane under free flow condition. This urban traffic noise model is specific to different geographical regions and depends on vehicle categories and characteristics of in use vehicles. Subsequently, mid-block studies were conducted for measuring traffic noise Leq (in dB(A)), average speed, and traffic volumes of different vehicle categories. To develop the traffic noise prediction model, physical condition of the road, carriageway width, width of the footpath, median size, number of lanes, and ground cover (hard or soft) need to be accounted for. A modified traffic noise prediction model has been developed using REMEL models and different adjustment factors. Subsequently, the correlation analysis was performed between predicted and observed Leq (in dB(A)) to check the model fitness by correlation coefficient R2 = 0.76 and mean absolute percentage error is ranged from 0.8 to 1.2% for the predicted and observed Leq at all the selected sites of measurement periods for the Kanpur city. With this calibrated model, a noise map has been developed to identify noise hotspots during different time intervals within the city.
期刊介绍:
MAPAN-Journal Metrology Society of India is a quarterly publication. It is exclusively devoted to Metrology (Scientific, Industrial or Legal). It has been fulfilling an important need of Metrologists and particularly of quality practitioners by publishing exclusive articles on scientific, industrial and legal metrology.
The journal publishes research communication or technical articles of current interest in measurement science; original work, tutorial or survey papers in any metrology related area; reviews and analytical studies in metrology; case studies on reliability, uncertainty in measurements; and reports and results of intercomparison and proficiency testing.